© Springer-Verlag 1990

The Pressure in the Huang-Yang-Luttinger Model of an Interacting Boson Gas

M. van den Berg¹, T. C. Dorlas², J. T. Lewis², and J. V. Pulé^{2,3}

- ¹ Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH144AS, Scotland
- ² School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland
- ³ Department of Mathematical Physics, University College, Belfield, Dublin 4, Ireland

Abstract. This completes our study of the equilibrium thermodynamics of the Huang-Yang-Luttinger model of a boson gas with a hard-sphere repulsion. In an earlier paper we obtained a lower bound on the pressure, but our proof of an upper bound held only for a truncated version of the model. In this paper we establish an upper bound on the pressure in the full model; the upper and lower bounds coincide and provide a variational formula for the pressure. The proof relies on recent second-level large deviation results for the occupation measure of the free boson gas.

1. Introduction

Huang, Yang and Luttinger [1] introduced a model of a boson gas with a hard-sphere repulsion which may be described thus: let $\Lambda_1, \Lambda_2, \ldots$ be a sequence of regions in \mathbb{R}^d with V_l , the volume of Λ_l , tending to infinity with l; with each region Λ_l , we associate the sequence $\varepsilon_l(1) \le \varepsilon_l(2) \le \cdots$ of ordered real numbers interpreting $\varepsilon_l(j)$ as the j^{th} eigenvalue of the single-particle Hamiltonian of the non-interacting system in the region Λ_l , so that the free-gas Hamiltonian H_l^0 is given by

$$H_l^0 = \sum_{j \ge 1} \varepsilon_l(j) n_l(j), \tag{1.1}$$

where $n_l(j)$ is the occupation number of the j^{th} level; then the Huang-Yang-Luttinger model is described by the Hamiltonian

$$H_1^{\text{HYL}} = H_l^0 + \frac{a}{2V_l} \left\{ 2N_l^2 - \sum_{j \ge 1} n_l(j)^2 \right\}, \tag{1.2}$$

where $N_l = \sum_{j \ge 1} n_l(j)$ is the total number of particles and a > 0. The physics of this

model was discussed by Huang, Yang and Luttinger [1] and by Thouless [2] and reviewed in our recent paper [3]; we do not repeat the discussion here, except to recall that in [1] the authors argued that the condensate, if any, would occupy