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Abstract. We generalize the classical notion of a K-system to a non-commutative
dynamical system by requiring that an invariantly defined memory loss be
100%,. We give some examples of quantum K-systems and show that they
cannot contain any quasi-periodic subsystem.

1. Introduction

There seems to be general agreement [1-4] that classical K-systems exhibit those
mixing and chaotic properties which are necessary for the foundation of statistical
mechanics. Classically they can be characterized by the existence of a subalgebra
of < M = the algebra of observables with
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Here o is the time evolution and v and A mean union and intersection of algebras.
These conditions are met in particular if there exists a generating subalgebra
Ay M with  V  d"dg=M, N V 6 "o/ =cl. The difficulties of gene-
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ralizing this for non-commutative alget;ras M comes from the fact that then even
two finite-dimensional isomorphic subalgebras may generate algebraically an
infinite-dimensional .#. For instance, if x and p satisfy [x,p]=i and y is a
characteristic function of [ — 1, 1] and o:(x, p) - (p, — x), then o/ ; = (x(x), 1 — x(x))
and o/, generate the algebra W=1,® M, and </, A 6.9/, = cl. Nevertheless,
Emch [2] has proposed a notion of a non-commutative K-system and an associated
dynamical entropy starting with the algebraic characterization given at the
beginning (see also [3,4]). We have recently [S] given an alternative definition
of the dynamical entropy of a non-commutative system and we propose a
corresponding notion of a quantum K-system. We start with the classically



