Commun. Math. Phys. 124, 9-21 (1989)

Analyticity of Scattering for the ϕ^4 Theory

John C. Baez¹ and Zheng-Fang Zhou²

¹ University of California, Riverside, CA 92521, USA

² Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract. We consider scattering for the equation $(\Box + m^2)\varphi + \lambda\varphi^3 = 0$ on four-dimensional Minkowski space. For m > 0, one-to-one and onto wave operators $W_{\lambda}^{\pm}: \mathbf{H} \to \mathbf{H}$ are known to exist for all $\lambda \ge 0$, where **H** denotes the Hilbert space of finite-energy Cauchy data. We prove that the maps $(\lambda, u) \mapsto W_{\lambda}^{\pm}(u)$ and $(\lambda, u) \mapsto (W_{\lambda}^{\pm})^{-1}(u)$ are continuous from $[0, \infty) \times \mathbf{H}$ to **H**, and extend to real-analytic functions from an open neighborhood of $\{0\} \times \mathbf{H} \cup \mathbb{R} \times \{0\} \subset \mathbb{R} \times \mathbf{H}$ to the Hilbert space \mathbf{H}_{-1} of Cauchy data with Poincaré-invariant norm. For m = 0, wave operators W_{λ}^{\pm} are known to exist as diffeomorphisms of **H** for all $\lambda \ge 0$, where here **H** denotes the Hilbert space of finite Einstein energy Cauchy data. In this case we prove that the maps $(\lambda, u) \mapsto W_{\lambda}^{\pm}(u)$ and $(\lambda, u) \mapsto (W_{\lambda}^{\pm})^{-1}(u)$ extend to real-analytic functions from a neighborhood of $[0, \infty) \times \mathbf{H} \subset \mathbb{R} \times \mathbf{H}$ to **H**.

1. Introduction

The classical ϕ^4 theory is the Poincaré-invariant nonlinear wave equation:

$$(\Box + m^2)\varphi + \lambda\varphi^3 = 0, \quad m, \lambda \ge 0,$$

where \Box denotes the D'Alembertian on Minkowski space, $\mathbf{M}_0 \cong \mathbb{R}^4$, and φ is a real-valued function on \mathbf{M}_0 . Its main interest is as a simple classical analogue of the equations describing interacting relativistic quantum fields, which in four dimensions have so far resisted attempts at a rigorous formulation. The possibility of the existence of wave and scattering operators for this equation as transformations of the Hilbert space **H** of finite-energy solutions of the free equation ($\lambda = 0$) was suggested by Segal, who first published results in this direction in 1966 [10]. The problem inspired a large amount of research, most focusing on the massive case (m > 0). In 1978 Strauss [12] proved for this case the existence of wave operators W^{\pm} : $\mathbf{H} \rightarrow \mathbf{H}$ such that

$$\lim_{t \to +\infty} \| U(t)u - V(t)W^{\pm}u \| = 0$$

for each $u \in \mathbf{H}$, where U(t) is the unitary group on **H** corresponding to time evolution