Commun. Math. Phys. 123, 529-534 (1989)

Communications in Physics

© Springer-Verlag 1989

A Note on the Diffusion of Directed Polymers in a Random Environment

Erwin Bolthausen

Fachbereich Mathematik, Technische Universitat Berlin, D-1000 Berlin 12

Abstract. A simple martingale argument is presented which proves that directed polymers in random environments satisfy a central limit theorem for $d \geq 3$ and if the disorder is small enough. This simplifies and extends an approach by J. Imbrie and T. Spencer.

1. Introduction

In a recent paper, Imbrie and Spencer [1] considered the following model of a random walk in a random environment. Let $\xi(t)$, $t \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ be an ordinary symmetric random walk on \mathbb{Z}^d starting in 0 and let $h(t, x)$, $t \in \mathbb{N}$, $x \in \mathbb{Z}^d$, be i.i.d. random variables which are $+$ or -1 with probability 1/2 and also independent of *ξ.* We denote by < > the expectation with respect to *ξ* and by *E(*.) the expectation with respect to the *h*-variables. Let $0 < \varepsilon < 1$ be fixed and for $T \in \mathbb{N}$,

$$
\kappa(T) = \prod_{j=1}^{T} (1 + \varepsilon h(j, \xi(j))) .
$$

Imbrie and Spencer proved the following result by a rather elaborate expansion technique:

Theorem 1. *If* $\varepsilon > 0$ *is small enough and* $d \geq 3$ *, then*

$$
\lim_{T \to \infty} \langle |\xi(T)|^2 \kappa(T) \rangle / T \langle \kappa(T) \rangle = 1 \quad \text{almost surely}
$$

(here \ \ is the Euclidean norm).

We give here a very simple proof based on martingale limit theorems. The result in [1] is somewhat stronger and includes also a convergence rate. Such rates can also be obtained by the method presented here. An inspection of the proof reveals that the convergence rate is $O(T^{-\delta})$ almost surely for $\delta < (d-2)/4$. Theorem 1 is a special case of a more general result which includes the central limit theorem which seems to be new. Let $\xi_1(T), \ldots, \xi_d(T)$ be the components of the random walk.