

The (N=1) Supersymmetric Sine-Gordon Model in Two Dimensions. I

Marzio Cassandro¹, Francesco Nicolò², and Benedetto Scoppola³

Abstract. In this paper and its companion (II) we prove that the Supersymmetric N=1 massless Sine-Gordon field theory, at finite (space) volume, exists and is analytic in the coupling constant λ . Moreover at finite (space) volume is Witten index is =1.

Table of Contents

Inti	roduction
1.	The Supersymmetric Model: Definitions and Notations
2.	The Euclidean Continuation: Regularizations and Definition of the Interacting
	Measure
3.	The Introduction of the Wick product
4.	The Effective Potential
5.	The Results: The Existence and the Analyticity of the Theory
6.	The Lattice Regularization and O.S. Positivity
7.	The Results: The Supersymmetry is not Spontaneously Broken
8.	The Strategy of the Proofs
9.	Some Remarks on the Scalar Sine-Gordon Theorey
10.	Conclusions

Introduction

Supersymmetry has had in recent years a relevant impact in field theory both on the physical and on the mathematical side. Specifically a question which has deep connections with modern mathematics is the presence or not of a spontaneous breaking of the supersymmetry in some field theory models (Witten [1]). This question is connected to the study of the index of an operator (a Dirac operator in a infinite dimensional space). All this, apart from more phenomenological aspects, makes it interesting to perform a rigorous mathematical study of the supersymmetric field theory models. This problematic is thoroughly discussed in the papers of Jaffe et al. [2] where they study the N=1 and N=2 Wess-Zumino models.

¹ Dipartimento di Fisica, Università della Sapienza, C.N.R.-GNSM-C.N.R.-GNFM, Roma, Italy

² Dipartimento di Fisica, Università di Lecce, Lecce, Italy

³ I.N.F.N., Sezione di Roma, Italy