Commun. Math. Phys. 122, 455-526 (1989)

S¹ Actions and Elliptic Genera*

Clifford Henry Taubes

Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

Abstract. A proof is given of Witten's conjectures for the rigidity of the index of the Dirac-Ramond operator on the loop space of a spin manifold which admits an S^1 symmetry.

1. Introduction

When *M* is a connected, compact, oriented, even dimensional, spin Riemannian manifold, one can define the Dirac operator, ∂ , to act on the space of smooth sections of the bundle of complex spinors, $S(T^*M) \rightarrow M$. The index of this operator can be defined by using Clifford multiplication on $S(T^*M)$ by $(i)^{n(n+1)/2} \cdot \omega$, with ω being the image in the Clifford algebra of the volume form on *M* and with $n = \dim(M)$. This defines a covariantly constant involution, γ , of $S(T^*M)$. As an involution of $C^{\infty}(S(T^*M))$, γ anti-commutes with the Dirac operator. Then,

$$\operatorname{Ind}(\partial, \gamma) \equiv \dim(\ker(\partial|_{\ker(\gamma-1)})) - \dim(\ker(\partial|_{\ker(\gamma+1)})).$$
(1.1)

Now, suppose that M admits an isometric action of S^1 . Here, the index of ∂ has a refinement which is the S^1 equivariant index. That is, use the S^1 action to decompose $C^{\infty}(S(T^*M)) = \bigoplus_k C^{\infty}(S(T^*M), k)$ where the double cover of S^1 acts on $C^{\infty}(S(T^*M), k)$ as multiplication by λ^k ; $\lambda \in S^1$. As ∂ and γ commute with the S^1 action, they both preserve $C^{\infty}(S(T^*M), k)$ and with this understood, the S^1 equivariant index of ∂ is, by definition, the set of integers, $\{\operatorname{Ind}(\partial, \gamma, k)\}$, which is obtained by replacing $\ker(\gamma \pm 1) \cap C^{\infty}(S(T^*M))$ in Eq. (1.1) with $\ker(\gamma \pm 1)$ $\cap C^{\infty}(S(T^*M), k)$.

The S¹-equivariant index can be generalized in the usual way by twisting the dirac operator with a vector bundle over M. Thus, when $V \rightarrow M$ is a complex vector bundle, one can define the index of the Dirac operator on $S(T^*M) \otimes V$, $Ind(\partial, V, \gamma)$, by replacing $ker(\gamma \pm 1) \in C^{\infty}(S(T^*M))$ with $ker(\gamma \pm 1) \in C^{\infty}(S(T^*M) \otimes V)$. And, if a finite cover of the S¹ action on M has a lift to V, one can consider the S¹ equivariant

^{*} Research supported in part by the National Science Foundation