© Springer-Verlag 1989

Non-Integrability of the 4-Vortex System: Analytical Proof

Jair Koiller^{1,*} and Sonia P. Carvalho²

- ¹ Laboratorio National de Computação Cientifica, Caixa Postal 56018, 22290 Rio de Janeiro, RJ, Brazil
- ¹ Instituto de Matematica da UFRJ, Caixa Postal 68530, 21944 Rio de Janeiro, RJ, Brazil
- ² Departamento de Matematica da UFMG, ICEX, Pampulha, Belo Horizonte, MG, Brazil, 30000

Abstract. An analytical proof is given that the motion of n point vortices in the plane is non-integrable for n > 3. The basic geometric configuration, which models a situation often found experimentally, consists of two opposite strong vortices and two advected weak vortices. We use "Melnikov's method," as presented by Holmes and Marsden [Commun. Math. Phys. **82**, 523–544 (1982)]. The Melnikov integral is explicitly evaluated, by residues, in the limiting situation where one of the weak vortices is very close to one of the primaries.

1. Introduction

Our aim here is to present a completely analytical proof for the presence of horseshoes in the dynamics of 4 point vortices, using the Melnikov method as presented by Holmes and Marsden [HM]. The hydrodynamical background can be found in Aref [A1–A3]; for the mathematical relevance of this and other non-integrability problems, see Kozlov [Kz, Kz1]. The Dynamical Systems prerequisite here is the statement (with caveats, see Sect. 4): "the presence of transversal homoclinic points implies nonexistence of further (analytical) integrals of motion." Non-expert readers may find all the relevant material in Guckenheimer and Holmes [GH].

Our choice for a special geometrical setting consists of two strong, opposite vortices, and two weak, advected ones. Two-dimensional flows whose structure is dominated by strong, opposite couples are fairly common: Couder and Basdevant [CB] call those couples "Bachelor couples" in a remarkable double pun (they are very stable and a homage to Prof. Batchelor).

Ziglin [Z1, 1980], using another special configuration, gave a semi-analytical proof for the non-integrability: the Melnikov integral is evaluated numerically.

^{*} Visitor at the Department of Mathematics, Yale University, 1986–1987, under a CAPES/Brazil fellowship