Trapping and Cascading of Eigenvalues In the Large Coupling Limit

F. Gesztesy^{1,4,*,**}, D. Gurarie^{1,***}, H. Holden², M. Klaus³, L. Sadun¹, B. Simon^{1,**}, and P. Vogl⁴

¹ Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

² Institute of Mathematics, University of Trondheim, N-7034 Trondheim-NTH, Norway

³ Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

⁴ Institute for Theoretical Physics, University of Graz, A-8010 Graz, Austria

Abstract. We consider eigenvalues E_{λ} of the Hamiltonian $H_{\lambda} = -\Delta + V + \lambda W$, W compactly supported, in the $\lambda \to \infty$ limit. For $W \ge 0$ we find monotonic convergence of E_{λ} to the eigenvalues of a limiting operator H_{∞} (associated with an exterior Dirichlet problem), and we estimate the rate of convergence for 1-dimensional systems. In 1-dimensional systems with $W \le 0$, or with W changing sign, we do not find convergence. Instead, we find a cascade phenomenon, in which, as $\lambda \to \infty$, each eigenvalue E_{λ} stays near a Dirichlet eigenvalue for a long interval (of length $O(\sqrt{\lambda})$) of the scaling range, quickly drops to the next lower Dirichlet eigenvalue, stays there for a long interval, drops again, and so on. As a result, for most large values of λ the discrete spectrum of H_{λ} is close to that of H_{∞} , but when λ reaches a transition region, the entire spectrum quickly shifts down by one. We also explore the behavior of several explicit models, as $\lambda \to \infty$.

1. Introduction

In quantum mechanics one frequently encounters Hamiltonians of the form $H_{\lambda} = H_0 + \lambda W$, where H_0 describes a well-understood system (the "background" or "free" Hamiltonian), W describes any of various interactions in the system (e.g. interacting particles, and external fields, etc.), and λ (the "coupling constant") measures the strength of the interaction W. In this paper we consider Hamiltonians

^{*} Max Kade Foundation Fellow

^{**} Partially supported by USNSF under Grant DMS-8416049

^{***} On leave of absence from Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA. Partially supported by USNSF under Grant DMS-8620231 and the Case Institute of Technology, RIG