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Abstract. We consider eigenvalues Eλ of the Hamiltonian Hλ= — Δ+ V+
λW, W compactly supported, in the / -> oo limit. For W ̂  0 we find monotonic
convergence of Eλ to the eigenvalues of a limiting operator H^ (associated with
an exterior Dirichlet problem), and we estimate the rate of convergence for
1-dimensional systems. In 1-dimensional systems with W^09 or with W
changing sign, we do not find convergence. Instead, we find a cascade
phenomenon, in which, as Λ,->oo, each eigenvalue Eλ stays near a Dirichlet

eigenvalue for a long interval (of length 0(^/1)) of the scaling range, quickly
drops to the next lower Dirichlet eigenvalue, stays there for a long interval,
drops again, and so on. As a result, for most large values of λ the discrete
spectrum of Hλ is close to that of H^, but when λ reaches a transition region,
the entire spectrum quickly shifts down by one. We also explore the behavior
of several explicit models, as λ-+ oo.

1. introduction

In quantum mechanics one frequently encounters Hamiltonians of the form
Hλ — H0 -f λW, where H0 describes a well-understood system (the "background"
or "free" Hamiltonian), W describes any of various interactions in the system (e.g.
interacting particles, and external fields, etc.), and / (the "coupling constant")

measures the strength of the interaction W. In this paper we consider Hamiltonians
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