

Ergodic Endomorphisms of Compact Abelian Groups*

M. Shirvani and T. D. Rogers

Department of Mathematics, University of Alberta, Edmonton, Alberta Canada, T6G 2G1

Abstract. We show that for a surjective endomorphism of a compact abelian group ergodicity is equivalent to a condition which implies *r*-mixing for all $r \ge 1$, and we characterize such maps algebraically. This is then used in proving the ergodicity of an extensive class of endomorphisms of the binary sequence space. As a simple corollary it is found that one-dimensional linear cellular automata and the accumulator automata are *r*-mixing for all $r \ge 1$.

1. Introduction

Let θ be a continuous automorphism of a compact abelian group G. The classical automorphism theorem of Halmos [4] states that θ is strongly mixing with respect to the normalized Haar measure on G if and only if it is ergodic. To explain our generalization, say θ is *completely mixing* in G if and only if the following holds:

Given any integer $r \ge 1$, any r + 1 measurable subsets A_0, \ldots, A_r of G, and any r sequences $\{k_{in}\}$ of positive integers such that $\lim_{n \to \infty} k_{in} = \infty$ for all $1 \le i \le r$, we

have

$$\lim_{n\to\infty}\mu(A_0\cap\theta^{-k_{1n}}(A_1)\cap\cdots\cap\theta^{-k_{rn}}(A_n))=\prod_{j=0}^r\mu(A_j).$$

In an arbitrary space the above property may well be stronger than the condition of *r*-mixing introduced by Rohlin [9], since the latter involves the extra assumption that $\lim_{n\to\infty} \min_{i\neq j} |k_{in} - k_{jn}| = \infty$. We prove the following generalization of the above result.

Theorem 1 (Endomorphism Theorem). Let G be a compact abelian group with normalized Haar measure μ , and let θ be a continuous surjective endomorphism of G. Then θ is μ -invariant. Moreover, the following are equivalent:

- (i) θ is completely mixing.
- (ii) θ is *r*-mixing for all $r \ge 1$.

^{*} This work was supported in part by grants from NSERC