Commun. Math. Phys. 117, 615–624 (1988)

Remarks on Cosmological Spacetimes and Constant Mean Curvature Surfaces

Robert Bartnik

Centre for Mathematical Analysis, Australian National University, GPO Box 4, Canberra ACT 2601, Australia

Abstract. We give a general condition which ensures the existence of constant mean curvature (CMC) Cauchy surfaces in cosmological spacetimes. However, there is an example of a spacetime which does not satisfy this condition and does not admit any CMC Cauchy surfaces. We discuss conditions under which CMC surfaces may exist.

Introduction

A Lorentzian manifold \mathscr{V} is a *cosmological spacetime* if it is globally hyperbolic with compact Cauchy surfaces and satisfies the timelike convergence condition

(TCC) $\operatorname{Ric}(T, T) \ge 0$, for every timelike vector T.

In this paper we are concerned with the following conjecture:

Conjecture 1. There is a CMC Cauchy surface in \mathscr{V} .

We first show the following existence result:

Theorem. Suppose the condition

(G) $\mathscr{V} - I(p)$ is compact, for some point $p \in \mathscr{V}$,

is satisfied. Then there is a regular CMC Cauchy surface, which passes through p.

By regular surface we mean a strictly spacelike $C^{2,\alpha}$ hypersurface [B2] and we are assuming throughout that the spacetime metric is C^2 . The proof of the theorem depends on some new existence and regularity results for prescribed mean curvature surfaces [B2].

However, Conjecture 1 is false in general, as we have:

Example 1. There is a cosmological spacetime \mathscr{V} which admits no CMC Cauchy surfaces.