Invariants for Smooth Conjugacy of Hyperbolic Dynamical Systems. IV

R. de la Llave^{1,*} and R. Moriyón²

Abstract. We show that if two C^{∞} transitive Anosov flows in a three-dimensional manifold are topologically conjugate and the Lyapunov exponents on corresponding periodic orbits agree, then the conjugating homeomorphism is C^{∞} .

I. Introduction and Statement of Results

The purpose of this paper is to present a unified approach to the problem of smooth conjugacy of Anosov systems (both flows and diffeomorphisms) in low dimensional manifolds. Our results extend those of [Ll] for diffeomorphisms in that no proximity assumption is made. Also, the results for flows, [MM], are extended to cover arbitrary flows instead of one-parameter families of them. We also recover the result of [MM] that all Anosov diffeomorphisms of a two-dimensional manifold with constant Lyapunov exponents in periodic orbits are C^{∞} conjugate to linear automorphisms. Finally, we show how the important result of Feldman and Ornstein, [FO], on C^{1} conjugacy of geodesic flows implies C^{∞} conjugacy.

We have known from Palis that Ghys has suggested a different approach using one-dimensional expansive maps to prove C^1 regularity of the conjugacy.

Our results are the following:

Theorem 1. Let X, Y be two C^{∞} transitive Anosov vector fields in a compact three-dimensional manifold. If they are C^0 conjugated and the Lyapunov exponents at corresponding periodic orbits are the same, then the conjugating homeomorphism is C^{∞} .

Remark. Notice that the hypothesis about the Lyapunov exponents follows from C^1 , or even Lipschitz, conjugacy. Hence, C^1 conjugacies are C^{∞} for the systems considered in Theorem 1. This remark also applies to Theorem 2.

¹ Department of Mathematics, Fine Hall, Washington Road, Princeton University, Princeton, NJ 08544, USA

² División de Matemáticas, Univ. Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

^{*} Partially supported by NSF grant # DMS 85-04984