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Abstract. Witten’s gauge fields are interpreted as motions on an infinite-
dimensional Grassmann manifold. Unlike the case of self-dual Yang-Mills
equations in Takasaki’s work, the initial data must satisfy a system of
differential equations since Witten’s equations comprise a pair of spectral
parameters. Solutions corresponding to (anti-) self-dual Yang-Mills fields are
characterized in the space of initial data and in application, some Yang-Mills
fields which are not self-dual, anti-self-dual nor abelian can be constructed.

0. Introduction

Consider a gauge field V in the eight-dimensional complex space €* satisfying
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where (y,2)= Vo, V1 V2, V3. 20, 21, 22, 23) are coordinates of C8, Vy. and V, are
covariant derivatives, and ¢,,,; denotes the totally antisymmetric tensor such that
o123 =1.

Setx=(y+z)/2, w=(y —2z)/2. Witten [9] pointed out that Eq. (0.1) imply the full
Yang-Mills equations
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on the diagonal subspace 4 = {(», z) € €C*|w =0}, and further, that a gauge field on 4
satisfies (0.2) if and only if it can be extended to a neighborhood of 4 consistently to
(0.1) mod (wg, wy, wy, w3)*. Here (wo, wy, w,, w3)? denotes the square of the ideal
generated by wg, wy, w,, and wy.



