Commun. Math. Phys. 112, 217–235 (1987)

Correlations of Peaks of Gaussian Random Fields*

James M. Cline, H. David Politzer, Soo-Jong Rey**, and Mark B. Wise*** California Institute of Technology, Pasadena, CA 91125, USA

Abstract. The high peaks of a Gaussian random field are studied. Asymptotic expansions, appropriate for high peak thresholds and large spatial separations, are developed for the N-point correlation functions of the number density of high peaks, in terms of the two-point correlation of the underlying Gaussian field. Similar expressions are derived for the correlations of points, not necessarily the positions of peaks, where the field exceeds a high threshold.

I. Introduction

The mathematical modeling of many physical processes often proceeds via a statistical approach. The behavior of the random field of interest, $\varepsilon(\vec{x})$, is described by a probability distribution $P[\varepsilon]$, or equivalently by the moments of the probability distribution (we assume here that all the moments exist),

$$\langle e(\vec{x}_1) \dots e(\vec{x}_n) \rangle = \int [d\epsilon] \epsilon(\vec{x}_1) \dots \epsilon(\vec{x}_n) P[\epsilon].$$
 (1)

In Eq. (1) the \vec{x}_i are points in a *D*-dimensional Euclidean space \mathbb{R}^{D} , and the integration is over the value of ε at each point in \mathbb{R}^{D} . Some applications have a random variable which depends only on time, in which case D = 1. This occurs, for example, in the theory of noise in electrical networks [1]. Other applications may deal with a field ε which takes values that depend on the location in "physical" space, in which case D = 3. One such example is the theory of the large scale structure of the universe, where ε is the mass density fluctuation field [2, 3].

The most common probability distribution encountered in practice is a Gaussian distribution, which has

$$P[\varepsilon] = \frac{1}{Z} \exp\left[-\frac{1}{2} \int d^D x d^D y \varepsilon(\vec{x}) \xi^{-1}(|\vec{x} - \vec{y}|) \varepsilon(\vec{y})\right],$$
(2)

where Z is a constant chosen so that $P[\varepsilon]$ is normalized to unity and $\xi^{-1}(|\vec{x} - \vec{y}|)$ is

^{*} Work supported in part by U.S. Department of Energy under contract DEAC03-81-ER40050.

^{**} KFAS Graduate Fellow

^{***}Alfred P. Sloan Foundation Fellow and supported in part by U.S. Department of Energy Outstanding Junior Investigator Program under contract No. DE-FG03-84 ER40172