Commun. Math. Phys. 112, 175-203 (1987)

Kähler-Einstein Metrics on Complex Surfaces with $C_1 > 0$

Gang Tian* and Shing-Tung Yau** Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA

Dedicated to Walter Thirring on his 60th birthday

Abstract. Various estimates of the lower bound of the holomorphic invariant $\alpha(M)$, defined in [T], are given here by using branched coverings, potential estimates and Lelong numbers of positive, *d*-closed (1, 1) currents of certain type, etc. These estimates are then applied to produce Kähler-Einstein metrics on complex surfaces with $C_1 > 0$, in particular, we prove that there are Kähler-Einstein structures with $C_1 > 0$ on any manifold of differential type $CP^2 \# nCP^2$ ($3 \le n \le 8$).

The question of finding gravitational instantons has been important in mathematical physics. In this paper, we restrict ourselves to Kähler-Einstein metrics. In 1976, the second author solved Calabi's conjecture on the Kähler-Einstein metric. However, an important related question has not been solved yet. When a compact complex manifold has positive first Chern class, does it admit any Kähler-Einstein metric?

The theorem of Matsushima says that if such a metric exists, the automorphism group must be reductive. More recently, Futaki introduced more invariants related to the automorphism group and he demonstrated that these invariants are zero if the Kähler-Einstein metric exists. Some authors expressed the hope that if the automorphism group is discrete, then the Kähler-Einstein metric exists. However, there is another integrability condition, the tangent bundle of a Kähler-Einstein manifold has to be stable unless reducible. (The work of Bogomolov, Kobayashi, Lübke leads to such a conclusion.) Since the stability of the tangent bundle is more related to the linearized version of the equation, it is likely that a

^{*} Research supported in part by Alfred P. Sloan Fellowship for doctoral dissertation

^{**} Research supported in part by NSF grant # DMS 84-08447 and ONR contract # N-00014-85-K-0367