Commun. Math. Phys. 108, 647-651 (1987)

An Example of Absence of Turbulence for Any Reynolds Number: II*

C. Marchioro

Dipartimento di Matematica, Universitá di Roma I, "La Sapienza", Piazzale A. Moro 5, I-00185 Roma, Italy

Abstract. We study a viscous incompressible fluid moving in a two dimensional flat torus $[0, L] \times [0, 2\pi]$, $L < 2\pi$. We show a set of external forces for which the stationary state is attractive for any Reynolds number *R*. Moreover, the size of this set and the basin of attraction are independent of *R*.

In a previous paper [1] we have considered a viscous incompressible fluid moving in a two dimensional flat torus $[0, L] \times [0, 2\pi]$, $L \leq 2\pi$. We have shown an external force \mathbf{f}_0 for which there is a globally attractive stationary state for any Reynolds number R. Moreover, we proved that this stability property holds also for a neighbourhood of \mathbf{f}_0 of size depending on R (and vanishing for $R \to \infty$). In the present paper we demonstrate that actually for $L < 2\pi$ the size of this neighbourhood is independent of R.

The Navier-Stokes equations governing the motion are

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \mathbf{f} + \nu \varDelta \mathbf{u}, \quad \mathbf{u}(0) = 0, \tag{1}$$

$$\partial_x u_x + \partial_y u_y = 0, \qquad (2)$$

Communications in Mathematical

Physics © Springer-Verlag 1987

$$\int_D \mathbf{u} d\mathbf{x} = 0; \quad \int_D \mathbf{f} dx = 0,$$

$$D = [0, L] \times [0, 2\pi]; \quad \mathbf{x} = (x, y) = x\mathbf{c}_1 + y\mathbf{c}_2 \in D$$

where $\mathbf{u}(x, t)$ is the velocity, $p(x, t) \in \mathbb{R}^+$ the pressure, v > 0 the viscosity, $\mathbf{f}(x)$ the external force. All functions involved are periodic of period L in x and 2π in y.

We introduce the vorticity $\omega = \partial_x u_y - \partial_y u_x$.

Equation (1) becomes

$$\partial_t \omega + (\mathbf{u} \cdot \nabla) \omega = F + v \varDelta \omega \,, \tag{3}$$

where

$$F = \partial_x f_y - \partial_y f_x.$$

^{*} Research partially supported by Italian CNR and Ministero della Pubblica Istruzione