Local and Non-Local Conserved Quantities for Generalized Non-Linear Schrödinger Equations

A. D. W. B. Crumey

Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, UK

Abstract. It is shown how to construct infinitely many conserved quantities for the classical non-linear Schrödinger equation associated with an arbitrary Hermitian symmetric space G/K. These quantities are non-local in general, but include a series of local quantities as a special case. Their Poisson bracket algebra is studied, and is found to be a realization of the "half" Kac-Moody algebra $\mathscr{K}_R \otimes \mathbb{C}[\lambda]$, consisting of polynomials in positive powers of a complex parameter λ which have coefficients in the compact real form of \mathscr{K} (the Lie algebra of K).

1. Introduction

Fordy and Kulish [1] have considered a class of non-linear partial differential equations, each associated with an Hermitian symmetric space G/K, which are of the form

$$iq_t^{\alpha} = q_{xx}^{\alpha} - q^{\beta} q^{\gamma} q^{\delta *} R^{\alpha}_{\beta \gamma - \delta}, \qquad (1.1)$$

where summation is implied over repeated indices. $q^{\alpha}(x, t)$ are fields in one space dimension whose label α denotes a root of \mathcal{G} (the Lie algebra of G) such that the step operator e_{α} does not lie in \mathscr{K} (the Lie algebra of K). R is the "curvature tensor" defined by

$$e_{\alpha}R^{\alpha}_{\beta\gamma-\delta} = \left[e_{\beta}\left[e_{\gamma}, e_{-\delta}\right]\right]. \tag{1.2}$$

A special case of (1.1), corresponding to G = SU(2), is the non-linear Schrödinger (NLS) equation

$$iq_t = q_{xx} + 2|q|^2 q . (1.3)$$

Equation (1.1) will be referred to as the Generalized non-linear Schrödinger (GNLS) equation associated with G/K. The NLS equation is known to have infinitely many conserved quantities which are local [in the sense that the currents are expressed only in terms of the fields q(x, t), $q^*(x, t)$ and their derivatives at a point], and are in involution (i.e. their Poisson bracket algebra is abelian). The aim