Commun. Math. Phys. 108, 591-603 (1987)

Special Energies and Special Frequencies

M. Endrullis and H. Englisch

Sektion Mathematik, Karl-Marx-Universität Leipzig, DDR-7010 Leipzig, German Democratic Republic

Abstract. "Special frequencies" have been asserted to be zeros of the density of frequencies corresponding to a random chain of coupled oscillators. Our investigation includes both this model and the random one-dimensional Schrödinger operator describing an alloy or its discrete analogue. Using the phase method we exactly determine a bilateral Lifsic asymptotic of the integrated density of states k(E) at special energies E_s , which is not only of the classical type $\exp(-c/|E-E_s|^{1/2})$ but also $\exp(-c'/|E-E_s|)$ is a typical behaviour. In addition, other asymptotics occur, e.g. $|E-E_s|^{c''}$, which show that k(E) need not be C^{∞} .

1. Introduction

In this paper, we consider the random Schrödinger operator (Hamiltonian)

$$H^{\omega} = -\frac{d^2}{dx^2} + V^{\omega}(x) \quad \text{on} \quad L^2(R)$$
(1)

with

$$V^{\omega}(x) = \sum_{n \in \mathbb{Z}} V_{\omega(n)}(x-n), \qquad (2)$$

where the indices $\omega(n)$ are random variables on the realization space Ω with values in the set $\{1, 2, ..., r\}$. We deal with the case in which the random process $\omega(n)$ is independent, identically distributed and the functions V_i are form-bounded with respect to $-d^2/dx^2$ (e.g., they can be bounded or δ -functions, cf. [1]) and satisfy supp $V_i \subseteq [0,1)$ for all $i \in \{1, 2, ..., r\}$ (the random process can be chosen more generally, cf. [2]). The operator H^{ω} defined in this way describes a one-dimensional *r*-ary random alloy in the one-body approximation.

Our interest is directed to the integrated density of states, i.e. to the limit

$$k(E) = \lim_{L \to \infty} \frac{1}{L} N_E(H_L^{\omega}), \qquad (3)$$