The Gibbs Measures and Partial Differential Equations

I. Ideas and Local Aspects

Boguslaw Zegarliński*

Research Center Bielefeld-Bochum-Stochastic, Universität Bielefeld, D-4800 Bielefeld, Federal Republic of Germany

Abstract. We investigate the connections of the Gibbs measures, which appear in Euclidean Field Theory, and the corresponding partial differential equations of Classical Euclidean Field Theory.

1. Preliminaries

Let \mathscr{F} denote the family of bounded open sets $\Lambda \subset \mathbb{R}^d$ with piecewise \mathscr{C}^n , for some $n \ge 1$, boundary $\partial \Lambda$. Let \mathscr{F}_0 be a countable base of \mathscr{F} , i.e.

$$\mathcal{F}_0 := \{ \Lambda_n \}_{n \in \mathbb{N}} \subset \mathcal{F} \quad \text{such that for every} \quad n \in \mathbb{N}, \Lambda_n \subset \Lambda_{n+1}$$
 and $\forall \Lambda \in \mathcal{F} \ \exists n \ \Lambda \subset \Lambda_n$. (1)

For $\Lambda \subset \mathbb{R}^d$ we denote $\Lambda^c := \mathbb{R}^d \setminus \Lambda$.

Let (Ω, Σ) be a standard Borel space. We assume that in Σ there is a distinguished family of σ -algebras of local events $\{\Sigma_{\Lambda}\}_{\Lambda \in \mathscr{F}}$, which generates Σ and is compatible, i.e.

$$\Lambda_1, \Lambda_2 \in \mathcal{F} : \Lambda_1 \subset \Lambda_2 \implies \Sigma_{\Lambda_1} \subset \Sigma_{\Lambda_2}. \tag{2}$$

For any open set $Q \subset R^d$ we define the σ -algebra Σ_Q as the σ -algebra generated by $\{\Sigma_A : \Lambda \in \mathcal{F}, \Lambda \subset Q\}$. For arbitrary set $Q \subset R^d$ we define

$$\Sigma_{Q} := \{ \bigcap \Sigma_{\tilde{Q}} : \tilde{Q} \text{ open, } \tilde{Q} \supset Q \}.$$
 (3)

In particular we have the family of σ -algebras $\{\Sigma_{A^c}\}_{A\in\mathscr{F}}$ with the property

$$\Lambda_1, \Lambda_2 \in \mathcal{F} : \Lambda_1 \subset \Lambda_2 \implies \Sigma_{\Lambda_2^c} \subset \Sigma_{\Lambda_1^c}. \tag{4}$$

We define the σ -algebra at infinity by

$$\Sigma_{\infty} := \bigcap_{\Lambda \in \mathscr{F}} \Sigma_{\Lambda^c}. \tag{5}$$

^{*} On leave of absence from Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland