Inequalities for the Schatten p-Norm. IV

Fuad Kittaneh
Department of Mathematics, United Arab Emirates University, Al-Ain, United Arab Emirates

Abstract. We prove some inequalities for the Schatten p-norm of operators on a Hilbert space. It is shown, among other things, that if A, B, and X are operators such that $A + B \geq |X|$ and $A + B \geq |X^*|$, then $\|AX + XB\|_p^p + \|AX^* + X^*B\|_p^p \geq 2\|X\|_p^{2p}$ for $1 \leq p < \infty$, and $\max(\|AX + XB\|, \|AX^* + X^*B\|) \geq \|X\|^2$.

Also, for any three operators A, B, and X,

$$\|AX + XB\|_p^p + \|AX^* + X^*B\|_p^p \leq \|AX - XB\|_p^p + \|A^*X - X^*B\|_p^p,$$

1. Introduction

In their work on free states of the canonical anticommutation relations, Powers and Størmer [9, Lemma 4.1] proved that if A and B are positive operators on a Hilbert space H, then $\|A^{1/2} - B^{1/2}\|_2^2 \leq \|A - B\|_1$. Also, in studying the quasi-equivalence of quasifree states of canonical commutation relations, Araki and Yamagami [2, Theorem 1] proved that if A and B are operators on a Hilbert space H, then $\|A - B\|_1 \leq 21/2 \|A - B\|_2$. This has been recently generalized so that $\|A - B\|_2 + \|A - B\|_2^2 \leq 2 \|A - B\|_2^2$ [7, Theorem 2].

The purpose of this paper, which is in the same spirit as those of [5–7], is to extend these inequalities to commutator versions and to show that in some cases the trace norm can be replaced by a general p-norm. In particular it will be shown that for positive operators A and B, $\|A^{1/2} - B^{1/2}\|_p^2 \leq \|A - B\|_p$ for $1 \leq p \leq \infty$.

Let H be a separable complex Hilbert space and let $B(H)$ denote the algebra of all bounded linear operators on H. Let $K(H)$ denote the closed two-sided ideal of compact operators on H. For any compact operator A, let $s_1(A), s_2(A), \ldots$ be the eigenvalues of $|A| = (A^*A)^{1/2}$ in decreasing order and repeated according to multiplicity. A compact operator A is said to be in the Schatten p-class C_p ($1 \leq p < \infty$), if $\sum s_i(A)^p < \infty$. The Schatten p-norm of A is defined by $\|A\|_p = (\sum s_i(A)^p)^{1/p}$. This norm makes C_p into a Banach space. Hence C_1 is the trace class and C_2 is the Hilbert–Schmidt class. It is reasonable to let C_∞ denote the ideal of compact operators $K(H)$, and $\|\cdot\|_\infty$ stand for the usual operator norm.

If $A \in C_p$ ($1 \leq p < \infty$) and $\{e_i\}$ is any orthonormal set in H, then $\|A\|_p^p \geq \sum |\langle Ae_i, e_i \rangle|^p$. More generally, if $\{E_i\}$ is a family of orthogonal projections satisfying $E_i E_j = \delta_{ij} E_i$, then $\|A\|_p^p \geq \sum \|E_i A E_i\|_p^p = \|\sum E_i A E_i\|_p^p$, and for $p > 1$ equality will hold if and only if $A = \sum E_i A E_i$. Moreover, if $\sum E_i = 1$ (the identity operator) and $p = 2$, then $\|A\|_2^2 = \sum \|E_i A E_i\|_2^2$. One more fact that will be needed in