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Abstract. An explicit formula is given felating the effective potential in a finite
volume P(¢), quantum field theory to the expected energy density under the
constraint of a fixed average field. In the one phase region, i.e., where the classical
potential equals its convex hull and has nonvanishing second derivative, it is
shown via a central limit theorem that in the infinite volume limit the effective
potential is equal to the constrained energy density, provided # is sufficiently
small.

1. Introduction

The effective potential in a quantum field theory is the Legendre transform of the
generator of the connected Feynman vacuum graphs. In [2] it is argued that the
physical meaning of the effective potential evaluated at the classical field a is the
expected energy density under the constraint that the average field has value a. In [6]
a heuristic argument using functional integrals is given in support of this physical
interpretation. Steps are taken towards making this interpretation rigorous in [9].

Since the constrained energy density is in general not convex in finite volume,
while the effective potential is convex, the two quantities cannot in general be equal
in finite volume. In Theorem 1 below, an explicit formula is given relating the
effective potential of a finite volume P(¢), theory to the expected energy density
under the constraint of a fixed average field. In Theorem 2 below, it is shown using a
central limit theorem that in the infinite volume limit the two quantities are equal in
the one phase region, provided # is sufficiently small.

We now introduce the notation. Let P be a polynomial of degree greater than or
equal to four which is bounded below, and let m > 0. For ueR, let

U (@) = P(a) + im*a® — pa.

The classical potential of the model is then U,. The one-phase region is the
complement of the set B, defined as follows:

B ={aeR:Uy(a) #(convUy(a)} ~ U {aeR: U(a) = 0},

where convU, denotes the convex hull of U,. Let du be the Gaussian measure on



