© Springer-Verlag 1986

A Supersymmetric Transfer Matrix and Differentiability of the Density of States in the One-Dimensional Anderson Model

Massimo Campanino* and Abel Klein**

Department of Mathematics, University of California, Irvine, Ca 92717, USA

Abstract. Let $H = -\Delta + V$ on $l^2(\mathbb{Z})$, where V(x), $x \in \mathbb{Z}$, are i.i.d.r.v.'s with common probability distribution v. Let $h(t) = \int e^{-itv} dv(v)$ and let k(E) be the integrated density of states. It is proven: (i) If h is n-times differentiable with $h^{(j)}(t) = O((1+|t|)^{-\alpha})$ for some $\alpha > 0, j = 0, 1, ..., n$, then k(E) is a C^n function. In particular, if v has compact support and $h(t) = O((1+|t|)^{-\alpha})$ with $\alpha > 0$, then k(E) is C^{∞} . This allows v to be singular continuous. (ii) If $h(t) = O(e^{-\alpha|t|})$ for some $\alpha > 0$ then k(E) is analytic in a strip about the real axis.

The proof uses the supersymmetric replica trick to rewrite the averaged Green's function as a two-point function of a one-dimensional supersymmetric field theory which is studied by the transfer matrix method.

1. Introduction

The one-dimensional Anderson model is given by the random Hamiltonian H= $H_0 + V$ on $l^2(\mathbb{Z})$, where

$$(H_0 u)(x) = \frac{1}{2}(u(x+1) + u(x-1))$$

and V(x), $x \in \mathbb{Z}$, are independent identically distributed random variables with common probability distribution ν . We will denote by h its characteristic function, i.e., $h(t) = \int e^{-itv} dv(v)$.

Let Λ be an interval in \mathbb{Z} , we will denote by H_{Λ} the operator H restricted to $l^2(\Lambda)$ with boundary condition u(x) = 0 for x not in Λ .

The integrated density of states, k(E), is defined by

$$k(E) = \lim_{|A| \to \infty} \# \{\text{eigenvalues of } H_{\Lambda} \leq E\}.$$

^{*} Permanent address: Dipartimento di Matematica, II Universita di Roma, Via Orazio Raimondo, I-00173 (La Romanina) Roma, Italy

^{**} Research partially supported by the NSF under grant MC-8301889