© Springer-Verlag 1986

Signs of the Ising Model Ursell Functions

S. B. Shlosman

Institute for Problems of Information Transmission, Academy of Sciences, 101447, Ermolovoy, 19, Moscow, USSR

Abstract. It is proven that the Ursell functions U_{2k} of the Ising model have the conjectured signs: $(-1)^{k+1}U_{2k} \ge 0$. The proof is based on Aizenman's random current representation and combinatorics.

1. Introduction

The Ursell function $U_k(\sigma_1, ..., \sigma_k)$ of a family of k random variables $\sigma_1, ..., \sigma_k$ is defined by means of a generating function:

$$U_k(\sigma_1, ..., \sigma_k) = \frac{\partial^k}{\partial h_1 ... \partial h_k} \ln \left\langle \exp \sum_{i=1}^k h_i \sigma_i \right\rangle \Big|_{h \equiv 0}.$$
 (1)

Here $\langle \ \rangle$ stands for expectation. Another way to define them is by the formula

$$U_k(\sigma_1, ..., \sigma_k) = \sum_{\mathscr{P}} (-1)^{|\mathscr{P}|-1} (|\mathscr{P}|-1)! \sum_{P \in \mathscr{P}} \left\langle \prod_{p \in P} \sigma_p \right\rangle, \tag{2}$$

where the summation is over all partitions \mathscr{P} of the set $I = \{1, ..., k\}$, $\mathscr{P} = \{P_1, ..., P_r\}$, $|\mathscr{P}| = r$, $\bigcup_{i=1}^r P_i = I$, $P_i \cap P_j = \phi$, $i \neq j$. The formula (2) follows from (1) by a straightforward calculation.

In this paper we study the Ursell functions of the general Ising ferromagnet with pair interaction. We have a collection of random variables $\sigma_1, ..., \sigma_N, \sigma_i = \pm 1$, whose joint distribution is given by the probabilities

$$P_{N}(\sigma) = Z^{-1} \exp\left\{ \sum_{s,t=1,s+t}^{N} J_{st} \sigma_{s} \sigma_{t} \right\}, \tag{3}$$

where the partition function

$$Z = \sum_{\sigma} \exp\left\{ \sum_{s, t=1, s=t}^{N} J_{st} \sigma_{s} \sigma_{t} \right\}, \tag{4}$$

and $J_{st} \ge 0$ for all s, t = 1, ..., N.