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Abstract. We extend to @3 the work of S. Breen on the leading behavior at large
order of @4 perturbation theory. Using a phase space expansion to obtain new
estimates on the high energy behavior of ¢4 Feynman graphs, and a rigorous
semiclassical expansion, we prove that the radius of convergence of the Borel
transform of the pertubative series for ¢% Euclidean field theory is the one
computed by the Lipatov method.

I. Introduction

The Lipatov method is a formal steepest descent method for finding the
asymptotic behavior at large order of perturbation series in the Euclidean path
integral formulation of quantum field theory. Following early work by Bender and
Wu [1] and Lam [2], the first calculations by Lipatov [3] were restricted to

massless @ field theory in dimension

N2 T The method was extensively
developed by Brézin, Le Guillou and Zinn-Justin [4] to compute the large order
behavior of general bosonic theories. After arguments by Parisi and 't Hooft [ 5] it
was realized that the result should hold only for superrenormalizable theories. Yet
even there a general rigorous justification of the Lipatov method has not been
given. Let us summarize the work done in this direction and the difficulties.

For simplicity we limit ourselves in this paper to the perturbative expansion for
the pressure of the massive one-component ¢* model in dimensions 1, 2, or 3, in
which it is superrenormalizable. We rescale also the bare mass to be 1. Extensions
to arbitrary mass, to N-component vector models and to general Schwinger
functions are easy, once this simple case has been rigorously understood, and we
do not discuss them here.

The partition function of the model in a volume A is defined by constructive
field theory [6,7] as:

Zx(g) — j‘ e —gV(p)+ countertermsd'ux(/l) , (11)

in which V(p)= |, 0*(x)dx, A=[—T/2, T/2]* and X =p (periodic) or D
(Dirichlet) specifies the two possible types of boundary conditions that we will



