Commun. Math. Phys. 99, 593-612 (1985)

Are There Critical Points on the Boundaries of Singular Domains?

Michael R. Herman

Centre de Mathématiques, Ecole polytechnique, F-91128 Palaiseau Cedex, France

Abstract. Generalizing a result of E. Ghys, we prove a general theorem that implies that if a rational function f of the Riemann sphere of degree \geq 2 leaves invariant a singular domain *C* (a disk or a ring) on which the rotation number of f satisfies a diophantine condition, provided that on \overline{C} f is injective, then each boundary component of C contains critical point of f . The injectivity condition is always satisfied for singular disks associated to linearizable periodic elliptic points of $f(z) = zⁿ + a$, with $n \in \mathbb{N}$, $n \ge 2$ and $a \in \mathbb{C}$. We also show that the singular disks, associated to periodic elliptic points of $f(z) = e^{az}$ that satisfy a diophantine condition, are unbounded in \mathbb{C} . In the end of the paper, we give a survey of the theory of iteration of entire functions of \mathbb{C} .

Introduction

In 1920, Fatou [3, §30] showed that if a rational function g, of degree ≥ 2 , left invariant a singular domain C, then the frontier (or boundary) of C in \overline{S}^2 was contained in the ω-limit set under *g* of the set critical points of *g* (C is either (C-diffeomorphic to D or to a ring). In 1942, Siegel [9] showed the existence of singular domains that are disks and for the existence of rings we refer to [6,1 and VIII].

We propose to show in II.1, under the restrictions that the rotation number α of $g_{\vert C}$ satisfies a diophantine condition and $g_{\vert \overline{C}}$ is injective, then g has at least one critical point in each component of $Fr(C)$. This generalizes the partial result obtained by Ghys [4] who supposed that $Fr(C)$ was a Jordan curve.

This result follows immediately from the main theorem (1.4). The proof of the main theorem was influenced by work of Ghys [4] who introduced diffeomorph isms of the circle, by using a form of conformal welding for special cases of Theorem 1 and related questions. The main ingredient to prove Theorem 1 is the fundamental theorem of [5, IX], as generalized by Yoccoz [10] (we use [10] to obtain rotation numbers that satisfy a diophantine condition and not the "unnatural" set of numbers of [5] that satisfy a condition A). The exact arithmetic for which the theorem of 1.4 is true is an open question (see 1.3).