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Abstract. Renormalization group equations describing the phenomenon of
intermittency in Hamiltonian systems are presented. All solutions satisfying
certain physical constraints are obtained; they are the complete set of simple
singularities. Further considerations lead to precise predictions for scaling
behavior at the onset of intermittency.

I. Introduction

It has long been known that a Hamiltonian system with one degree of freedom,
H(p, q\ has particularly simple behavior near an elliptic or hyperbolic fixed point. A
canonical transformation achieves Birkhoff's normal form

in the neighborhood of an elliptic fixed point, or the normal form

H(p, q) = apq + b(pq)2 + c(pq)3 + -• (2)

in the neighborhood of a hyperbolic fixed point [1,2]. What is the corresponding
normal form in the limit of marginal stability (a = 0)? An answer to this question is
found in the singularity theory of Arnold [3]. By limiting consideration to a special
type of behavior, called "simple," he obtains a discrete classification of the
possibilities. The results are not widely known or understood by physicists, perhaps
because of the unfamiliar mathematical techniques involved. Presented in this paper
is a physically motivated calculation of Arnold's simple normal forms, based on the
renormalization group for mappings introduced by Feigenbaum [4,5].

Feigenbaum's renormalization group for mappings has been used to study three
phenomena occurring in Hamiltonian systems: infinite cascades of period-doubling
bifurcations, the breakup of KAM tori and tangent bifurcations [6-11,23-25]. The
classification of simple normal forms is obtained through a comprehensive
treatment of the latter. The physical motivation for studying tangent bifurcations is


