© Springer-Verlag 1984

Existence, Uniqueness, and Nondegeneracy of Positive Solutions of Semilinear Elliptic Equations

Joel A. Smoller* and Arthur G. Wasserman

Department of Mathematics, The University of Michigan, Ann Arbor, MI 48109-1003, USA

Abstract. We study positive solutions of the Dirichlet problem: $\Delta u(x) + f(u(x)) = 0$, $x \in D^n$, u(x) = 0, $x \in \partial D^n$, where D^n is an *n*-ball. We find necessary and sufficient conditions for solutions to be nondegenerate. We also give some new existence and uniqueness theorems.

In this paper we study positive solutions of the Dirichlet problem

$$\Delta u(x) + f(u(x)) = 0, \quad x \in \Omega,$$
 (1)

$$u(x) = 0, \quad x \in \partial \Omega,$$
 (2)

where Ω is an *n*-ball D_R^n of radius R. Our original interest was with the degeneracy problem for solutions of (1), (2). That is, we wanted to find conditions under which 0 is not in the spectrum of the linearized equations; in symbols,

$$\text{if } \left\{ \begin{array}{ll} \Delta v(x) + f'(u(x))v(x) = 0 \,, & x \in \Omega \\ v(x) = 0 \,, & x \in \partial \Omega \end{array} \right\}, \quad \text{then} \quad v \equiv 0 \,.$$

When this holds, we say that the solution u of (1), (2) is non-degenerate; otherwise u is called degenerate. The interest in this notion comes from the fact that the non-degeneracy of a solution allows application of certain topological techniques to it, whereby its stability properties can be investigated [8, Chap. 24, Sect. D]. In pursuing this problem, we were led quite naturally to existence and uniqueness questions for (1), (2), and we also obtain some new results in these directions.

From a result of Gidas et al. [4], all positive solutions of (1), (2) on $\Omega = D_R^n$ are (monotone decreasing) functions of the radius, and must therefore satisfy a non-autonomous ordinary differential equation. Our uniqueness results follow from a general theorem concerning non-bifurcation of solutions of equations of the form

$$u'' + g(u, u', t) = 0, (3)$$

Research supported in part by NSF Contract Number MCS 80-02337