Determination of the Scattering Amplitude

A. D. Gangal* and J. Kupsch

Fachbereich Physik der Universität Kaiserslautern, D-6750 Kaiserslautern, Federal Republic of Germany

Abstract. The problem to determine the elastic scattering amplitude from the differential cross-section by the unitarity equation is reexamined. We prove that the solution is unique and can be determined by a convergent iteration if the parameter $\lambda = \sin \mu$ of Newton and Martin is bounded by $\lambda < \lambda_2 \simeq 0.86$. The method is based on a fixed point theorem for holomorphic mappings in a complex Banach space.

1. Introduction

The problem to determine the scattering amplitude when the differential crosssection is given by the integral equation of unitarity has been investigated for over 20 years [1-6] (a comprehensive list of references can be found in [7]). The unitarity equation for the elastic scattering amplitude of equal (pseudo-)scalar particles

$$F(x) = |F(x)|e^{i\phi(x)} = G(x)e^{i\phi(x)}$$

$$\tag{1}$$

imposes a nonlinear constraint on the phase function $\varphi(x)$,

$$G(\mathbf{n}_1 \cdot \mathbf{n}_2) \cdot \sin \varphi(\mathbf{n}_1 \cdot \mathbf{n}_2) = \frac{1}{4\pi} \int d\Omega_{\mathbf{n}} G(\mathbf{n}_1 \cdot \mathbf{n}) G(\mathbf{n}_2 \cdot \mathbf{n}) \cos \left[\varphi(\mathbf{n}_1 \cdot \mathbf{n}) - \varphi(\mathbf{n}_2 \cdot \mathbf{n})\right],$$
(2)

where $x = \mathbf{n}_1 \cdot \mathbf{n}_2 = \cos \Theta \in [-1, +1]$ is the cosine of the scattering angle and **n** the unit vector in the direction of the momentum. The modulus G(x) = |F(x)| is given by the differential cross-section. The characteristic quantity of this equation is the functional

$$\lambda = \sup_{\mathbf{n}_1, \mathbf{n}_2} \frac{1}{4\pi |F(\mathbf{n}_1 \cdot \mathbf{n}_2)|} \int d\Omega_{\mathbf{n}} |F(\mathbf{n}_1 \cdot \mathbf{n})| |F(\mathbf{n}_2 \cdot \mathbf{n})|.$$
(3)

In the following we assume that |F(x)| is a continuous function without zeros. Hence the supremum (3) is a finite number. The mere existence of a continuous

^{*} Present address: Physics Department, Poona University, Poona, India