Commun. Math. Phys. 93, 197-217 (1984)

Communications in Mathematical Physics © Springer-Verlag 1984

On Absence of Diffusion near the Bottom of the Spectrum for a Random Schrödinger Operator on $L^2(\mathbb{R}^{\nu})^+$

Fabio Martinelli^{1*} and Helge Holden²

1 Institut für Mathematik, Ruhr-Universität Bochum, D-4630 Bochum, Federal Republic of Germany

2 Matematisk institutt, Universitetet i Oslo, Blindern, Oslo 3, Norway

Abstract. We consider a random Schrödinger operator on $L^2(\mathbb{R}^{\nu})$ of the form $H_{\omega} = -\Delta + V_{\omega}, V_{\omega}(x) = \Sigma \chi_{C_i}(x)q_i(\omega), \{C_i\}$ being a covering of \mathbb{R}^{ν} with unit cubes around the sites of \mathbb{Z}^{ν} and $\{q_i\}$ i.i.d. random variables with values in [0, 1]. We assume that the q_i 's are continuously distributed with bounded density f(q) and that $0 < P(q_0 < \frac{1}{2}) = \alpha < 1$. Then we show that an ergodic mean of the quantity $\langle \int dx |x|^2 |(\exp(itH_{\omega})\Phi)(x)|^2 \rangle t^{-1}$ vanishes provided $\Phi = g_E(H_{\omega})\Psi$, where Ψ is well-localized around the origin and g_E is a positive C^{∞} -function with support in $(0, E), E \leq E^*(\alpha, |f|_{\infty})$. Our estimate of $E^*(\alpha, |f|_{\infty})$ is such that the set $\{x \in \mathbb{R}^{\nu} | V_{\omega}(x) \leq E^*(\alpha, |f|_{\infty})\}$ may contain with probability one an infinite cluster of cubes $\{C_i\}$ which are nearest neighbours. The proof is based on the technique introduced by Fröhlich and Spencer for the analysis of the Anderson model.

Section 1. Introduction

Let us consider a quantum mechanical particle moving in \mathbb{R}^{ν} and interacting with a random potential V_{α} given by

$$V_{\omega}(x) = \sum_{i \in \mathbb{Z}^{\nu}} \chi_{C_i}(x) q_i(\omega).$$
(1.1)

Here $C_i = \{x \in \mathbb{R}^v | -\frac{1}{2} < x_j \leq \frac{1}{2}; j = 1, ..., v\} + i$ and $\{q_i(\omega)\}_{i \in \mathbb{Z}^v}$ are independent identically distributed (i.i.d.) random variables with values in [0, 1] such that $P(q_0(\omega) \in [a, b]) = \int_a^b dq f(q), |f|_{\infty} \equiv \operatorname{ess} \sup |f| < \infty$ and $0 < P(q_0 \leq \frac{1}{2}) = \alpha < 1$. We are interested in the spectral properties of the corresponding random Hamiltonian H_{ω} on $L^2(\mathbb{R}^v)$

$$H_{\omega} = -\Delta + V_{\omega}, \tag{1.2}$$

⁺ Work supported in part by C.N.R. (Italy) and NAVF (Norway)

^{*} On leave of absence from Instituto di Fisica Università di Roma, Italia