

© Springer-Verlag 1984

On Characteristic Exponents in Turbulence

Elliott H. Lieb*

Departments of Mathematics and Physics, Princeton University, P.O. Box 708, Princeton, NJ 08544, USA

Abstract. Ruelle has found upper bounds to the magnitude and to the number of non-negative characteristic exponents for the Navier-Stokes flow of an incompressible fluid in a domain Ω . The latter is particularly important because it yields an upper bound to the Hausdorff dimension of attracting sets. However, Ruelle's bound on the number has three deficiences: (i) it relies on some unproved conjectures about certain constants; (ii) it is valid only in dimensions ≥ 3 and not 2; (iii) it is valid only in the limit $\Omega \rightarrow \infty$. In this paper these deficiences are remedied and, in addition, the final constants in the inequality are improved.

Ruelle [1] has derived upper bounds on the magnitude and number of non-negative characteristic exponents of the Navier-Stokes equation for the flow of an incompressible fluid in a domain $\Omega \in \mathbb{R}^d$. The bound on the number, $\tilde{N}(\mu)$ [defined in (42)], is particularly interesting because it leads to an upper bound on the Hausdorff dimension of a compact attracting set [1, Corollary 2.3]. Unfortunately, the bounds in [1] on $\tilde{N}(\mu)$, unlike those on the magnitude, have certain deficiencies which are

- (i) They rely for their validity on some conjectured, but as yet unproved, relations between the sharp constants in two known inequalities.
 - (ii) They are valid only for $d \ge 3$.
- (iii) Because Weyl's asymptotic formula for the eigenvalues of the Laplacian in Ω is used, the inequalities are not valid for any fixed Ω , but only in the limit $\Omega \rightarrow \infty$.

In this paper a different proof of Ruelle's inequality for the number will be given so that the above three deficiencies are remedied. The result is contained in Eqs. (40)–(43).

Let $v: \Omega \to \mathbb{R}^d$ denote a solution to the Navier-Stokes equation, and let $\mu_1 \ge \mu_2 \ge \dots$ be the characteristic exponents corresponding to a probability measure $\varrho(dv)$ on the space of solutions that is ergodic with respect to the Navier-

^{*} Work partially supported by U.S. National Science Foundation grant No. PHY-8116101-A01