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Abstract. Solutions / : IR->IR of Feigenbaum's functional equation f(f(x))
= oc~1f((xx), where αφO is a fixed real number, account for many of the
fascinating properties of the behaviour of successive iterates of (one parameter
families of) nonlinear maps. In connection with the phenomenon of in-
termittency, interesting families of exact solutions have recently been found (for
α>0). These solutions can all be derived from continuous bijective solutions
which are topologically equivalent to translations. In this paper, the general
exact continuous bijective solution is found for any α + 0, positive or negative.
In particular, it is shown that, for any αφO, there are solutions which are
/^equivalent to translations. And it is shown that bijective solutions equivalent
to translations exist only when 0 < α < 1. These results considerably enlarge the
stock of available exact solutions of Feigenbaum's equation.

1. Introduction

It is a remarkable fact that, for a wide class of real valued functions g of a real
variable, the recursion relations xn+1=Kg(xn) exhibit a rich qualitative [1] and
quantitative [2] behaviour which is essentially independent of the recursion
function g. Feigenbaum [3] and others [4-7] have provided an explanation of the
scaling and universal properties of the transition to chaos via period doubling
transformations in terms of a functional equation

/o(/oMHα~7o(«) (F)

for a real valued function / 0 of a real variable, where α < 0 is a fixed real number.
Solutions of (F) are evidently fixed points, in an appropriate function space, of the
transformation T defined by

(Γ/)(x) = α/(/(α-1x)), (T)

and the universal properties are [3-7] derived from the behaviour of T near a fixed
point in certain eigendirections in function space.


