Commun. Math. Phys 90, 575-579 (1983)

The Existence of a Black Hole Due to Condensation of Matter

Richard Schoen¹ and S.-T. Yau²

1 Department of Mathematics, University of California, Berkeley, CA 94720, USA

2 School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

Abstract. When enough matter is condensed in a small region, gravitational effects will be strong enough to cause collapse and a black hole will be formed. We formulate and prove here such a statement in the language of general relativity. (This is Theorem 2 of this paper.)

The main result of this paper is that for an asymptotically flat initial data set, with the mass density large on a large region, there is an apparent horizon (and a closed trapped surface) in the initial data. It was shown by Penrose [2] and Hawking [1] that under physically reasonable assumptions, the existence of a closed trapped surface implies that the spacetime which evolves from the initial data contains a black hole. Simple examples show that the mass density can be large on a set of arbitrarily large *diameter* without the existence of an apparent horizon in the initial data. Therefore, the notion of a "large region" must be suitably defined. We formulate a notion which measures more than one direction in Ω .

Definition. Let Γ be a simple closed curve in Ω which bounds a disk in Ω . We let $N_r(\Gamma)$ denote the set of points within a distance r of Γ . Define the H-radius of Ω with respect to Γ by

 $\operatorname{Rad}(\Omega, \Gamma) = \sup \{r : \operatorname{dist}(\Gamma, \partial \Omega) > r, \Gamma \text{ does not bound a disk in } N_r(\Gamma) \}.$

We define the *H*-radius of Ω , denoted Rad(Ω), by

 $\operatorname{Rad}(\Omega) = \sup \{\operatorname{Rad}(\Omega, \Gamma) : \Gamma \text{ as above}\}.$

Remark 1. Note that if Ω were a ball of radius R in \mathbb{R}^3 , then $\operatorname{Rad}(\Omega) = R/2$; on the other hand if Ω is the cross product of $S^2(R)$ with an interval (-L, L), then $\operatorname{Rad}(\Omega) = \min\left\{\frac{\pi R}{2}, L\right\}$.