Commun. Math. Phys. 86, 247-256 (1982)

All Massless, Scalar Fields with Trivial S-Matrix are Wick-Polynomials

Klaus Baumann

Institut für Theoretische Physik, Universität Göttingen, D-3400 Göttingen, Federal Republic of Germany

Abstract. We extend a result about non-interacting fields given by Buchholz and Fredenhagen. Consider a massless, scalar field ϕ in 3+1 dimensional space-time which does not interact. The corresponding Hilbert space is assumed to be the Fockspace *H* of the free massless field *A*. This implies – as we show in the first part – that all *n*-point-functions are rational functions of their arguments. In the second part we use this fact to construct a symmetric, traceless tensorfield $\phi^{\mu_1...\mu_n}$, relatively local to the original field ϕ , and connecting the vacuum with the one particle states. In the last part we prove $\phi^{\mu_1...\mu_n}$ to be relatively local to the free field *A*.

0. Introduction

In a series of papers Buchholz establishes a frame for a scattering theory for massless particles in 3+1 dimensional space-time [1]:

Let A(x) be the free, massless, scalar field acting in the Fockspace *H*. Let $\phi(x)$ be a real, scalar field which transforms under the same unitary representation of the Poincaré group as A(x). The corresponding Hilbert space is assumed to be the Fockspace *H*. We identify A(x) with the incoming field $\phi^{in}(x)$, respectively the outgoing field $\phi^{out}(x)$. In [1] Buchholz shows that

 $[\phi^{in}(x), \phi(y)] = 0$ for $y - x \in V^-$ (backward cone)

and

$$[\phi^{\text{out}}(x), \phi(y)] = 0$$
 for $y - x \in V^+$ (forward cone).

We want to prove the following:

Theorem. If $\phi(x)$ has a trivial S-matrix, then $\phi(x)$ is relatively local to the free field A(x).

This theorem extends the result given by Buchholz and Fredenhagen [2]. In their paper they show first that ϕ can be decomposed into a finite sum of fields ϕ_d with