Commun. Math. Phys. 82, 257-260 (1981)

Comment on "Analytic Scattering Theory for Many-Body Systems Below the Smallest Three-Body Threshold"

E. Balslev

Matematisk Institut, Universitetsparken, Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract. The proof of [1, Lemmas 2.1-2.3] is completed, showing that the operators of multiplication by k^2 in $H^{t,\ell}$, $|t| \leq 1, \ell = 0, \pm 2$, have spectrum \overline{R}^+ and generate the holomorphic semigroups $e^{\overline{\zeta k^2}}$, Re $\zeta < 0$.

It is pointed out, that [1, (5.54)] does not hold. Accordingly, a new version of [1, Theorem 5.15] is proved, saying that (5.44) defines an isomorphism of $\mathcal{N}(G_{+}(z,\kappa))/\mathcal{N}_{0}(G_{+}(z,\kappa))$ onto $\mathcal{N}(\mathcal{S}_{1}^{*}(\overline{z}))$.

1. On the Proof of Lemmas 2.1–2.3

Lemma 2.0. The operators \tilde{H}_0 defined by multiplication by k^2 in the spaces $H^{t,\ell}$ for $t = \pm s, 0 \le s \le 1, \ell = 0, \pm 2$ with domains $H^{t,\ell+2}$ have the spectrum \bar{R}^+ and generate holomorphic semigroups $e^{\zeta \tilde{H}_0}$ defined for $\operatorname{Re}\zeta < 0$.

Proof. Clearly, $(k^2 - z)^{-1} \in \mathscr{B}(H^{1,\ell}) \cap \mathscr{B}(H^{0,\ell}), \ \ell = 0, \pm 2, \ z \notin \overline{R}^+$, and hence by interpolation $(k^2 - z)^{-1} \in \mathcal{B}(H^{s,\ell}), 0 < s < 1, \ell = 0, \pm 2.$

By duality, $(k^2 - z)^{-1} \in \mathscr{B}(H^{-s, -\ell})$. Obviously, $(k^2 - z)^{-1}$ is unbounded in any of these spaces for $z \in \overline{R}^+$, hence $\sigma(\widetilde{H}_0) = \overline{R}^+$.

 \tilde{H}_0 generates the semigroup $\tilde{\mathscr{U}}(\zeta)$ given by

$$\widetilde{\mathscr{U}}(\zeta) = e^{\zeta k^2}$$
 in $\mathscr{B}(H^{s,\ell})$, $\operatorname{Re}\zeta < 0$.

Clearly, $\tilde{\mathcal{U}}(\zeta)$ is a uniformly bounded semigroup. For $s = \ell = 0, \zeta < 0, \tilde{\mathcal{U}}(\zeta)$ is the bounded semigroup $e^{\zeta H_0}$ generated by the self-adjoint operator H_0 in \mathcal{L}^2 . Thus, for $f \in H^{0,2}$

$$t^{-1}(e^{-tk^2}-1)f \xrightarrow[t \to 0]{} -H_0 f$$
 in \mathscr{L}^2 , hence in H^{-s} . (*)

From this it follows that (*) holds for all $f \in \mathcal{D}(\tilde{H}_0)$, and it is easy to see that the

operator \tilde{H}_0 in $H^{-s,0}$ is the infinitesimal generator of $\tilde{\tilde{\mathcal{U}}}(\zeta)$. A similar argument proves the same for \tilde{H}_0 in $H^{-s,-2}$, and using the duality of H^s with H^{-s} and $H^{s,2}$ with $H^{-s,-2}$ the same is proved for \tilde{H}_0 in H^s and $H^{s,2}$.