Commun. Math. Phys. 81, 239-241 (1981)

Lax Representation for the Systems of S. Kowalevskaya Type

A.M. Perelomov

Institute of Theoretical and Experimental Physics, 117259 Moscow, USSR

Abstract. We describe a number of dynamical systems that are generalizations of the S. Kowalevskaya system and admit the Lax representation.

It is well known (see for example [1, 2]), that the equations of motion of a three-dimensional heavy rigid body rotated about a fixed point is a completely integrable dynamical system only in the cases of Euler [3], Lagrange [4], and S. Kowalevskaya [5]. In the present note we describe a number of systems that are of the Kowalevskaya type and admit the Lax representation¹.

1. Let \mathscr{G} be the Lie algebra of a group G, \mathscr{G}^* be the space dual to \mathscr{G} , $\{x_{\alpha}\}$ be the coordinates of a point in the space \mathscr{G}^* . In the space $\mathscr{F}(\mathscr{G}^*)$ of smooth functions on \mathscr{G}^* , let us define the Poisson bracket²

$$\{f,g\} = C^{\gamma}_{\alpha\beta} x_{\nu} \partial^{\alpha} f \partial^{\beta} g, \qquad \partial^{\alpha} = \partial/\partial x_{\alpha}. \tag{1}$$

Here $C_{\alpha\beta}^{\gamma}$ are the structure constants of the Lie algebra. The space $\mathscr{F}(\mathscr{G}^*)$ is endowed by the above formula with the structure of the Lie algebra. A dynamical system in \mathscr{G}^* is determined by a Hamiltonian function $H(x) \in \mathscr{F}$, so that the equations of motion have the form

$$\dot{x}_{\alpha} = \{H, x_{\alpha}\}. \tag{2}$$

The coadjoint representation of the group G acts on the space \mathscr{G}^* . Orbits of this representation are invariant with respect to an arbitrary Hamiltonian H, and are the phase spaces of the considered systems.

2. Let G be a compact simple Lie group, K be its subgroup such that the factor space G/K is a symmetric space [6]. Then $\mathscr{G} = \mathscr{K} \oplus \mathscr{S}$, \mathscr{K} is the Lie al-

¹ Note that the Lax representation for equations of motion of a rigid body was discovered first by S. Manakov [8] for some particular cases

 $^{^2}$ In this note we use the tensor notations; in particular, everywhere repeated indices imply summation