

Small Perturbations of C^* -Dynamical Systems

C. J. K. Batty

Department of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland

Abstract. It is shown that if δ is the generator of a strongly continuous one-parameter group of *-automorphisms of a C^* -algebra A and δ' is an unbounded *-derivation of A with the same domain as δ , then $\delta + \alpha \delta'$ is also a generator for all sufficiently small real numbers α .

The perturbation theory of strongly continuous one-parameter contraction semi-groups $\{e^{tT}:t\geq 0\}$ on Banach spaces shows that several features of these systems are stable under relatively bounded perturbations [6,8]. For example if T' is a dissipative operator with the same domain \mathcal{D} as T, then T+T' is the generator of some contraction semi-group, provided that

$$||T'x|| \le \alpha ||x|| + \beta ||Tx||$$

for all x in \mathcal{D} , for some constants α and $\beta < 1$.

In the C^* -algebraic model of a quantum dynamical system, the time evolution is represented by a strongly continuous one-parameter group of *-automorphisms $\{e^{t\delta}:t\in\mathbb{R}\}$ of a C^* -algebra A, where the generator δ is a closed unbounded *-derivation. Longo [7] has shown that in this case, any *-derivation δ' with the same domain is automatically relatively bounded with respect to δ . In this note it will be shown that δ' is also necessarily dissipative, and therefore $\delta + \alpha \delta'$ is a generator for all sufficiently small α (cf. [4, Sect. 5]).

Longo's result also applies if δ is any closed *-derivation (not necessarily a generator), and he asked whether δ' is then necessarily closable. For commutative C^* -algebras, an affirmative answer to this problem was given in [3, Theorem 5.3]. The proof there involved showing that any (maximal) closed ideal containing a and $\delta(a)$ also contains $\delta'(a)$. Since the maximal ideals in a commutative C^* -algebra are of codimension 1 and have zero intersection, this enabled a very specific description of δ' to be given in terms of δ . For non-commutative C^* -algebras, it will be shown here that $\delta'(a)$ again belongs to the closed ideal generated by a and $\delta(a)$, and a partial answer to Longo's question will be given. All the results of this