Ground States of Quantum Spin Systems

Ola Bratteli^{1*}, Akitaka Kishimoto^{1**}, and Derek W. Robinson²

¹ Centre de Physique Théorique II, CNRS, F-13288 Marseille Cedex 2, France

² Department of Mathematics, University of N.S.W., Sydney, Australia, and

Centre de Physique Théorique II, CNRS, F-13288 Marseille Cedex 2, France

Abstract. We prove that ground states of quantum spin systems are characterized by a principle of minimum local energy and that translationally invariant ground states are characterized by the principle of minimum energy per unit volume.

I. Introduction

Let τ be a strongly continuous one-parameter group of *-automorphisms of a C^* -algebra \mathfrak{A} . Denote the generator of τ by δ . A state ω over \mathfrak{A} is defined to be a τ -ground state if

$$-i\omega(A^*\delta(A)) \ge 0$$

for all A in the domain $D(\delta)$ of δ . It follows that ω is τ -invariant and hence generates a covariant representation $(\mathscr{H}_{\omega}, \Pi_{\omega}, U_{\omega}, \Omega_{\omega})$ of (\mathfrak{A}, τ) . If U_{ω} is chosen such that $U_{\omega}(t)\Omega_{\omega} = \Omega_{\omega}$ and if H_{ω} is the infinitesimal generator of U_{ω} then the ground state condition implies $H_{\omega} \ge 0$. More generally a state ω is a τ -ground state if, and only if, ω is τ -invariant and $H_{\omega} \ge 0$. (For further details see [1], Chapter V).

A state ω is called a (τ, β) -KMS state, for $\beta \in \mathbb{R}$, if

 $\omega(AB) = \omega(B\tau_{i\beta}(A))$

for all entire analytic elements A, B of τ . The (τ, β) -KMS states arise from the Gibbs formalism of equilibrium statistical mechanics and correspond to equilibrium states at inverse temperature β . The ground states correspond to the zero temperature states.

One can prove, for example by the Sewell condition [2] (see also [3]) characterizing (τ, β) -KMS states, that if ω_{β} is a family of (τ, β) -KMS states which is weak*-convergent as $\beta \rightarrow \infty$ then the limit state ω is a τ -ground state. For this reason ground states are sometimes referred to as $(\tau, +\infty)$ -KMS states. This

^{*} Present address: Department of Mathematics, University of Oslo, Blindern, Oslo 3, Norway

^{**} Present address: Department of Mathematics, University of Ottawa, Ontario, Canada K1N 9B4