Commun. math. Phys. 64, 35-40 (1978)

Occurrence of Strange Axiom A Attractors Near Quasi Periodic Flows on $T^m, m \ge 3$

S. Newhouse¹, D. Ruelle²*, and F. Takens³*

¹ University of North Carolina, Chapel Hill, North Carolina, USA

² Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France

³ Mathematisch Instituut, Universiteit Groningen, Groningen, The Netherlands

Abstract. It is shown that by a small C^2 (resp. C^{∞}) perturbation of a quasiperiodic flow on the 3-torus (resp. the *m*-torus, m > 3), one can produce strange Axiom *A* attractors. Ancillary results and physical interpretation are also discussed.

1. Statement of Results

The main purpose of this note is to prove the following fact.

Theorem 1. Let $a = (a_1, ..., a_n)$ be a constant vector field on the torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$.

If n=3, in every C^2 neighborhood of a there is a vector field satisfying Axiom A and having a non trivial attractor.

If $n \ge 4$, in every C^{∞} neighborhood of a there is a vector field satisfying Axiom A and having a non trivial attractor.

We say that an Axiom A attractor is non trivial (or "strange") if it does not consist of a single periodic orbit (for general definitions, see Smale [7]). The above theorem improves a result of Ruelle and Takens [6], and can be obtained by simple modifications of the proof given there. We nevertheless give here a complete proof, based on the following result which is of interest in itself.

Theorem 2. Let M be a C^{∞} compact manifold of dimension m.

(a) If m=2, in every C^1 neighborhood of the identity there is an Axiom A diffeomorphism with a non trivial attractor.

(b) If $M = T^2$, in every C^2 neighborhood of the identity there is an Axiom A diffeomorphism with a non trivial attractor.

(c) If $m \ge 3$, in every C^{∞} neighborhood of the identity there is an Axiom A diffeomorphism with a non trivial attractor.

The proof of these theorems is given in Sect. 2. In Sect. 3 we discuss non trivial attractors for Axiom A diffeomorphisms of two-dimensional manifolds. Section 4 is devoted to physical interpretation of Theorem 1.

^{*} The authors visited the IMPA during the preparation of this manuscript