Commun. math. Phys. 64, 1-34 (1978)

Pointwise Bounds on Eigenfunctions and Wave Packets in N-Body Quantum Systems IV*

P. Deift¹, W. Hunziker², B. Simon³, and E. Vock²

¹ Courant Institute, NYU, New York, USA

² Institut für Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland

³ Departments of Mathematics and Physics, Princeton University, Princeton, New Jersey, USA

Abstract. We describe several new techniques for obtaining detailed information on the exponential falloff of discrete eigenfunctions of *N*-body Schrödinger operators. An example of a new result is the bound (conjectured

by Morgan)
$$|\psi(x_1...x_N)| \leq C \exp(-\sum_{1}^{N} \alpha_n r_n)$$
 for an eigenfunction ψ of

$$H_{N} = -\sum_{i=1}^{N} \left(\varDelta_{i} - \frac{Z}{|x_{i}|} \right) + \sum_{i < j} |x_{i} - x_{j}|^{-1} \cdot$$

with energy E_N . In this bound $r_1 r_2 ... r_N$ are the radii $|x_i|$ in increasing order and the α 's are restricted by $\alpha_n < (E_{n-1} - E_n)^{1/2}$, where E_n , for n = 0, 1, ..., N - 1, is the lowest energy of the system described by H_n . Our methods include sub-harmonic comparison theorems and "geometric spectral analysis".

§ 1. Introduction

It is an elementary fact that a solution of $(-\Delta + V)\psi = E\psi$ with $\psi \in L^2$, $V \to 0$ at ∞ (in some sense) and E < 0 has exponential falloff: it is certainly bounded (in some sense) by $C(\exp(-(1-\varepsilon)\sqrt{-E}|x|))$ for any $\varepsilon > 0$. Our interest here is in a considerably more subtle situation. Let

$$\tilde{H} = -\sum_{i=1}^{N} (2m_i)^{-1} \Delta^i + \sum_{i< j}^{1...N} V_{ij}(x^i - x^j)$$
(1.1)

on $L^2(\mathbb{R}^{\nu N})$ be the Schrödinger operator for N particles with coordinates $x^i \in \mathbb{R}^{\nu}$, where $\Delta^i =$ Laplacian with respect to x^i . The operator H obtained by separating the center of mass motion acts on $L^2(X)$ where X is the $\nu(N-1)$ -dimensional subspace $\Sigma m_i x^i = 0$ of $\mathbb{R}^{\nu N}$. (Kinematics is discussed in Appendix 1). We consider solutions of

$$H\psi = E\psi \,. \tag{1.2}$$

^{*} Research supported in part by grants from the USNSF