

Construction of the Affine Lie Algebra $A_1^{(1)}$

James Lepowsky¹* ** and Robert Lee Wilson²***

¹ Department of Mathematics, Yale University, New Haven, Connecticut 06520, USA

² Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, USA

Abstract. We give an explicit construction of the affine Lie algebra $A_1^{(1)}$ as an algebra of differential operators on $\mathbb{C}[x_1, x_3, x_5, ...]$. This algebra is spanned by the creation and annihilation operators and by the homogeneous components of a certain "exponential generating function" which is strikingly similar to the vertex operator in the string model.

1. Introduction

For every complex simple Lie algebra \mathfrak{a} there is an infinite-dimensional Lie algebra \mathfrak{a} called the associated affine algebra. The affine algebras are among the generalized Cartan matrix (GCM) Lie algebras (or Kac-Moody Lie algebras), which were introduced and studied by Kac [3a] and Moody [7], and which have recently received a great deal of attention. The simplest non-trivial GCM Lie algebra is the affine Lie algebra $\mathfrak{sl}(S, \mathbb{C})$. [Here $\mathfrak{sl}(2, \mathbb{C})$ denotes the Lie algebra of traceless 2 by 2 complex matrices. The Kac-Moody definition of $\mathfrak{sl}(2, \mathbb{C})$ is given in §2 below.] This algebra is denoted $A_1^{(1)}$ by Kac. For convenience we will henceforth write g for $\mathfrak{sl}(2, \mathbb{C})$ and g for $\mathfrak{sl}(2, \mathbb{C})$.

The main purpose of this paper is to construct g as a concrete Lie algebra of differential operators on the space $\mathbb{C}[x_1, x_3, x_5, ...]$ of polynomials in infinitely many variables. (This space is naturally graded by setting deg $x_k = -k$.) In this construction (described in detail in § 5) g is spanned by the identity, the creation and annihilation operators $[L(x_k) \text{ and } \partial/\partial x_k]$, and the homogeneous components of

 $\exp(\sum 4L(x_k)/k)\exp(-\sum \partial/\partial x_k)$.

^{*} Partially supported by a Sloan Foundation Fellowship and NSF grant MCS 76-10435

^{**} Current address: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, USA

^{***} Most of this work was done while the author was a Visiting Fellow at Yale University, supported in part by NSF grant MCS 77-03608 and in part by a Faculty Academic Study Plan grant from Rutgers University