Commun. math. Phys. 61, 293-305 (1978)

Some Limit Theorems for Random Fields

Carla C. Neaderhouser*

Department of Mathematics, Texas A&M University, College Station, Texas 77843, USA

Abstract. We prove a central limit theorem with remainder and an iterated logarithm law for collections of mixing random variables indexed by Z^d , $d \ge 1$. These results are applicable to certain Gibbs random fields.

1. Introduction

In this paper we extend various classical limit theorems to collections of random variables indexed by $Z^d, d \ge 1$. The study of such collections is motivated by Gibbs random fields. For example we may define our probability space (Ω, \mathcal{F}, P) in the following way. Let $\Omega = \{-1, +1\}^{Z^d}$, with \mathcal{F} the σ -algebra generated by finite-dimensional cylinder sets. Then if Φ is a translation-invariant, finite-range, real-valued potential function on the finite subsets of Z^d with $\Phi(\phi) = 0$, the Gibbs state for the potential Φ is a probability measure P on (Ω, \mathcal{F}) for which, if $n \in Z^d$,

(1.1)
$$P\!\left(\omega(n)\middle|\mathscr{F}_{Z^{d}-\{n\}}\right) = \left(1 + \exp\!\left(2\sum_{A \in n} (\varPhi(A))\prod_{m \in A} \omega(m)\right)\right)^{-1}$$

is a regular conditional probability distribution for the "spin" at site *n* given the configuration on $Z^d - \{n\}$. Here \mathscr{F}_A is the σ -algebra depending on the coordinates in the set $A \subset Z^d$.

In [2] a unique such P is shown to exist for certain choices of Φ . Moreover conditions on Φ which imply that mixing occurs are stated. That is, it is shown that for certain Φ and for $A, B \subset Z^d$ the dependence of sets in \mathcal{F}_A on sets in \mathcal{F}_B decreases as d(A, B), the usual Euclidean distance between A and B, increases, but may increase as |A|, the cardinality of A, increases.

In [5] the F. K. G. inequalities are used to determine conditions on Φ which imply that events at sites $n, m \in \mathbb{Z}^d$ are positively correlated. For example if Φ is a nearest-neighbor potential

 $\Phi(\{n,m\}) > 0$ for d(n,m) = 1

is sufficient.

Thus we are led to study random variables $(X_n), n \in \mathbb{Z}^d$, which are positively

^{*} Partially supported by NSF Grant MSC 76-05828 and a grant from the Texas A&M University College of Science