© by Springer-Verlag 1977

Simple C^* -Algebras Generated by Isometries

Joachim Cuntz

Fachbereich Mathematik, TU Berlin, D-1000 Berlin 12

Abstract. We consider the C^* -algebra \mathcal{O}_n generated by $n \ge 2$ isometries $S_1, ..., S_n$ on an infinite-dimensional Hilbert space, with the property that $S_1S_1^* + ... + S_nS_n^* = 1$. It turns out that \mathcal{O}_n has the structure of a crossed product of a finite simple C^* -algebra \mathscr{F} by a single endomorphism scaling the trace of \mathscr{F} by 1/n. Thus, \mathcal{O}_n is a separable C^* -algebra sharing many of the properties of a factor of type III_λ with $\lambda = 1/n$. As a consequence we show that \mathcal{O}_n is simple and that its isomorphism type does not depend on the choice of $S_1, ..., S_n$.

A C^* -algebra is simple if it contains no non-trivial closed two-sided ideals. We call a simple C^* -algebra with unit infinite if it contains an element X such that $X^*X = 1$ and $XX^* \neq 1$. While non-separable algebras of this type are well known (e.g. the Calkin algebra or type III factors on a separable Hilbert space) there is to my knowledge no explicit example of a separable simple infinite C^* -algebra. The existence of such algebras was proved by Dixmier in [9, 2.1] by the following argument. Let S_1 , S_2 be two isometries $(S_i^*S_i = 1, i = 1, 2)$ on an infinite-dimensional Hilbert space $\mathscr H$ such that $S_1S_1^* + S_2S_2^* = 1$. Since the C^* -algebra $C^*(S_1, S_2)$ generated by S_1 and S_2 has a unit, it contains a maximal proper two-sided ideal $\mathscr F$. The quotient $C^*(S_1, S_2)/\mathscr F$ is separable, simple and infinite. One of the results of the present paper is that $C^*(S_1, S_2)$ itself is already simple (thus answering the question of Dixmier to this effect). More generally, we study the C^* -algebra generated by

 $n \ge 2$ isometries $S_1, ..., S_n$ satisfying $\sum_{i=1}^n S_i S_i^* = 1$ (this condition implies in particular

that the range projections $S_iS_i^*$ are pairwise orthogonal). We include the case $n=\infty$. We note incidentally that J. Roberts, motivated by investigations on superselection sectors, has studied closed linear spaces generated by isometries with this property [15]. These spaces are in fact Hilbert spaces and $C^*(S_1,...,S_n)$ is from this point of view the C^* -algebra generated by a Hilbert space.

We construct a faithful conditional expectation of $C^*(S_1,...,S_n)$ onto a C^* -subalgebra \mathcal{F} and show that $C^*(S_1,...,S_n)$ is the crossed product of \mathcal{F} by a single endomorphism Φ (in a sense to be made precise in Section 2). If n is finite, then \mathcal{F} is a