

© by Springer-Verlag 1976

Nonextendible Positive Maps

S. L. Woronowicz*

ZiF, University of Bielefeld, D-4800 Bielefeld, Federal Republic of Germany

Abstract. Positive maps of ordered vector spaces into the algebra of all bounded operators acting on a Hilbert space are considered. A special class of so called nonextendible maps is introduced and investigated. This class is much smaller than the class of extreme maps.

Any positive map can be obtained from a nonextendible one by restriction. In the C^* -algebra case, the nonextendibility of a normalized positive map ϕ is related to the properties of the expression $\phi(a^2) - \phi(a)^2$. In particular Jordan representations are non-extendible.

2-positive nonextendible maps are representations. Similar result holds for copositive maps. For abelian C^* -algebras, notion of nonextendible map and that of representation coincide.

The nonextendible positive maps of the Jordan algebra M_{2s} of all 2×2 symmetric matrices and of the full 2×2 matrix algebra are especially investigated. Any nonextendible normalized positive map of M_{2s} is a Jordan representation. M_2 admits nonextendible normalized positive maps not being Jordan representations. A large class of examples is given.

0. Introduction

Let $\mathfrak A$ and $\mathfrak B$ be C^* -algebras. We denote by $\mathfrak A_+$ and $\mathfrak B_+$ the cones of positive elements and by $1_{\mathfrak A}$ and $1_{\mathfrak B}$ the unity elements of these algebras. We shall consider linear maps ϕ of $\mathfrak A$ into $\mathfrak B$ such that $\phi(\mathfrak A_+)\subset \mathfrak B_+$ and $\phi(1_{\mathfrak A})=1_{\mathfrak B}$. To stress these properties we write

$$\phi: (\mathfrak{A}, \mathfrak{A}_+, 1_{\mathfrak{A}}) \to (\mathfrak{B}, \mathfrak{B}_+, 1_{\mathfrak{B}}). \tag{0.1}$$

We say that ϕ is a normalized positive map. In recent years, positive maps have become of common interest to mathematicians and physicists in particular in connection with the operator theory (cf. [1]) and the quantum theory of open systems (cf. [6, 8, 12]). The notion of positive map generalizes that of state, re-

^{*} On leave of absence from: Department of Mathematical Methods in Physics, University of Warsaw, Hoża 74, 00-682 Warsaw, Poland