Zeeman Topologies on Space-Times of General Relativity Theory

Rüdiger Göbel
Fachbereich 6, Mathematik, Universität Essen, GHS, D-4300 Essen 1, Federal Republic of Germany

Abstract. In 1964 Zeeman published a paper showing [independently of Alexandrov (1953)] that the causal structure of the light cones on Minkowski space M determines the linear structure of M. This initiated the question whether a topology (more physically than the ordinary one) on M, related to the light cones also implies the linear structure of M. In 1967 Zeeman defined such a new topology – here called Zeeman-topology Z_0 – on Minkowski space and solved this question for M. In that paper he asked whether it is possible to generalize this program to general relativity. Two of his main questions were:

(a) What is the structure of the group $G(S)$ of all homeomorphisms of a space-time S with respect to the general relativistic analogue of Z_0 (defined in § 3)?

(b) What are the world lines (defined in § 1) with respect to Z_0? Without any restrictions on the space-time S we will give the answers: (a) $G(S)$ is the group of all homothetic transformations on S (for an explicit discussion of this result we refer to § 5). (b) World lines are broken geodesics. Including external fields (like Maxwell fields and deviations of Z_0) the answer (b) can be generalized in different physical directions; cf. § 3.

Ein Fernrohr wird gezeigt, womit man seinen eigenen Rücken sieht.
Es führt durchs Weltall deinen Blick im Kreis zurück auf dein Genick.
Zwar braucht es so geraume Frist, daß du schon längst verstorben bist,
doch wird ein Standbild dir geweiht, empfängt es ihn zu seiner Zeit.

Christian Morgenstern, „Böhmischer Jahrmarkt“

Contents

§ 1. Introduction and Discussion ... 290
§ 2. Definition and Notations ... 292
§ 3. Zeeman Topology on a General Relativistic Space-Time 293
§ 4. Further Properties of the Zeeman Topologies on Space-Times 297
§ 5. The Group of All Homeomorphisms of a Space-Time 298
§ 6. References ... 306