Commun. math. Phys. 39, 243—250 (1974) © by Springer-Verlag 1974

Infinite Volume Asymptotics in $P(\phi)_2$ Field Theory

A. Lenard and C. M. Newman

Department of Mathematics, Indiana University, Bloomington, Indiana, USA

Received June 11, 1974; in revised form July 23, 1974

Abstract. We prove a number of asymptotic results in the $P(\phi)_2$ theory in the limit when the space cut-offs are removed, in particular the behavior of E_l and $Z_{t,l}$ as $t, l \to \infty$. Such results are used to study the question of orthogonality of infinite volume Euclidean measures $\mu_{\infty}(\lambda)$ for varying interaction constants λ .

1. Asymptotics

In this paper we consider any fixed real polynomial P(y) with P(0) = 0 which is bounded below, and the corresponding $P(\phi)_2$ quantum field theory in two-dimensional space-time [1]. The approximate, or cut-off, Hamiltonian is

$$H_{l} = H_{0} + \lambda \int_{-l/2}^{l/2} : P(\phi(x)): dx$$
(1.1)

where H_0 is the usual free Hamiltonian of mass $m_0 > 0$, and $\lambda \ge 0$ is the coupling constant. H_l has a simple eigenvalue E_l at the bottom of its spectrum, with corresponding eigenvector Ω_l , the (approximate) physical vacuum. The positive operator $H_l - E_l$ has no spectrum in some interval $(0, m_l)$ where $m_l > 0$. With Ω_0 denoting the bare vacuum in Fock space, it is known that $(\Omega_0, \Omega_l) \neq 0$. Thus $|(\Omega_0, \Omega_l)|^2 = \exp(-l\eta_l)$ defines η_l , where Ω_0 and Ω_l are both taken to have norm 1. The quantity

$$Z_{t,l} = e^{G_{t,l}} = (\Omega_0, e^{-tH_l}\Omega_0)$$
(1.2)

is the analogue of the partition function in classical statistical mechanics.

The following asymptotic results are known to hold for any $\lambda \ge 0$ [2, 3].

Theorem 1. There are functions $\alpha_{\infty}(\lambda)$ and $\beta_{\infty}(\lambda)$ such that i) $E_l = -\alpha_{\infty}l - \beta_{\infty} + o(1)$ as $l \to \infty$. ii) $0 < A \le \eta_l \le B < \infty$ as $l \to \infty$. iii) $G_{t,l} = \alpha_{\infty}tl + o(tl)$ as $t, l \to \infty$.