The Mass Gap for the $P(\phi)_2$ Quantum Field Model with a Strong External Field

Thomas Spencer*

Courant Institute of Mathematical Sciences, New York University, New York, USA

Received February 18; in revised form May 28, 1974

Abstract. We consider the $P(\phi)_2$ hamiltonian whose interaction density is given by

$$\lambda P(\phi(x)) + \mu \phi(x)^k$$

where k is odd and $1 \le k < \deg P$. For sufficiently large μ we show that there is a gap in the energy spectrum. In addition we obtain new regions of analyticity in λ and μ for the Schwinger functions and the pressure.

§ 1. Introduction

The $P(\phi)$ quantum field hamiltonian in two space time dimensions is given formally by

$$H = H_0 + \lambda \int P(\phi(x)) dx - E \ge 0$$
 (1.1)

where H_0 is the free hamiltonian of mass m_0 , P is a positive polynomial and E is the vacuum energy. In [2, 3], it was shown that for sufficiently weak coupling $(\lambda/m_0^2$ small) the vacuum (ground state) of H is unique and that the mass of H is positive. In this paper we consider the Hamiltonian

$$H_{\mu} = H_0 + \int :P_{\mu}(\phi(x)): dx - E_{\mu}$$
 (1.2)

where

$$P_{\mu}(\xi) = \lambda P(\xi) + \mu \xi^{k} \tag{1.3}$$

and k is odd, $1 \le k < n \equiv \deg P$. Our main result is that if μ is sufficiently large then the mass of H_{μ} is positive. We also show that the infinite volume Schwinger functions are analytic in λ and μ , provided $|\lambda|$, $|\operatorname{Im} \mu|$ are small, $\operatorname{Re} \lambda > 0$ and $|\mu|$ is large. The results of [2] can also be obtained for large μ .

If $P(\xi) = \lambda \xi^4 + \mu \xi$, $\mu \neq 0$, Simon and Griffiths [10] have established uniqueness of the vacuum and analyticity of the pressure (vacuum energy per unit volume) as a function of μ for $\text{Re}\,\mu > 0$. Their proof follows

^{*} Supported in part by the Sloan Foundation and by the National Science Foundation, Grant NSF-GP-24003.