Commun. math. Phys. 36, 321—324 (1974) © by Springer-Verlag 1974

Martin-Dynkin Boundaries of Random Fields

M. Miyamoto

Yoshida College, Kyoto University, Kyoto, Japan

Received December 20, 1973

Abstract. Analogous of exit spaces of Dynkin [4] for Markov processes are constructed for random fields introduced by Dobrushin [2].

Let X be a finite set and let T be countable. Let $\Omega = X^T$ and let \mathscr{B}_V be the σ -algebra generated by $\{\omega \in \Omega; \omega(t) = x\}_{t \in V, x \in X}$ for $V \subset T$. The σ -algebra \mathscr{B}_T is denoted simply by \mathscr{B} . Let be given a system of *conditional distributions* $q_{V,\omega}(A)$, which satisfy the following conditions, where V is a finite subset of T, $\omega \in \Omega$ and $A \in \mathscr{B}_V$.

- α) $q_{V,\omega}(\cdot)$ is a probability measure on \mathscr{B}_V .
- β) $q_{V,\omega}(A)$ is a \mathscr{B}_{V^c} -measurable function of ω for $A \in \mathscr{B}_V$.
- γ) If $V_1 \in V_2$, then for $A \in \mathscr{B}_{V_1}, B \in \mathscr{B}_{V_2 \setminus V_1}$ and $\omega \in \Omega$

$$q_{V_2,\omega}(A \cap B) = \int_B q_{V_1,c(V_2;\omega',\omega)}(A) q_{V_2,\omega}(d\omega') ,$$

where $c(V_2; \omega', \omega)(t) = \omega'(t)$ for $t \in V_2$, and $= \omega(t)$ for $t \notin V_2$.

A probability measure P on (Ω, \mathcal{B}) is called a *random field* with conditional distribution q, if for $A \in \mathcal{B}_V$

$$P(A | \mathscr{B}_{V^c}) = q_{V,\omega}(A)$$
 a.e. (P) .

Dobrushin [2] shows that the totality \mathcal{P} of random fields with q is a non-empty, compact and convex set, if

 $\delta) \lim_{W \to T} \sup_{\omega'} |q_{V,\omega'}(A) - q_{V,c(W;\omega',\omega)}(A)| = 0$

for $A \in \mathscr{B}_V$ and $\omega \in \Omega$, which we assume throughout this note.

Let $V_1
otin V_2
otin \cdots$ be an increasing sequence of finite subsets V_n of T with $\bigcup V_n = T$. Let Ω_{∞} be the set of ω for which there exists $\lim_{n \to \infty} q_{V_n,\omega}(A)$ for every cylindrical A.

Let $Q_{\omega}(A)$ be the limit. $Q_{\omega}(\cdot)$ is countably additive on \mathscr{B}_{V} for every finite subset V. Therefore it is extended to a probability measure on \mathscr{B} , which we denote by the same Q_{ω} . It is easy to see $Q_{\omega} \in \mathscr{P}$.

Let $\mathscr{B}_{\infty} = \bigcap_{V} \mathscr{B}_{V^c}$, where V runs over the set of all finite subsets of T.