Commun. math. Phys. 36, 287—304 (1974) © by Springer-Verlag 1974

Product States for Local Algebras

Detlev Buchholz

II. Institut für Theoretische Physik der Universität Hamburg, Hamburg, Federal Republic of Germany

Received February 8, 1974

Abstract. Let $\mathscr{R}(\mathscr{O}_1) \subset \mathscr{B}(\mathscr{H})$ and $\mathscr{R}(\mathscr{O}_2) \subset \mathscr{B}(\mathscr{H})$ be the von Neumann algebras associated with the space-time regions \mathscr{O}_1 and \mathscr{O}_2 respectively in the vacuum representation of the free neutral massive scalar field. For suitably chosen spacelike separated regions \mathscr{O}_1 and \mathscr{O}_2 it is proved that there exists a normal product state φ of $\mathscr{B}(\mathscr{H})$,

 $\varphi(AB) = \varphi(A) \cdot \varphi(B)$ for all $A \in \mathscr{R}(\mathcal{O}_1)$ and $B \in \mathscr{R}(\mathcal{O}_2)$.

Some consequences for the algebraic structure of the local rings are pointed out.

I. Introduction

It has been shown by Roos [1] that the local C^* -algebras $\mathfrak{A}(\mathcal{O}_1)$ and $\mathfrak{A}(\mathcal{O}_2)$ associated with spacelike separated regions \mathcal{O}_1 and \mathcal{O}_2 in Minkowski space are statistically independent: every pair of states φ_1 of $\mathfrak{A}(\mathcal{O}_1)$ and φ_2 of $\mathfrak{A}(\mathcal{O}_2)$ can be extended to a state φ of \mathfrak{A} (the C*-algebra generated by all local C*-algebras). Moreover, φ can be chosen to be a product state for $\mathfrak{A}(\mathcal{O}_1)$ and $\mathfrak{A}(\mathcal{O}_2)$:

 $\varphi(AB) = \varphi(A) \cdot \varphi(B)$ for all $A \in \mathfrak{A}(\mathcal{O}_1)$ and $B \in \mathfrak{A}(\mathcal{O}_2)$.

For a general structure analysis of physically interesting representations of the local C^* -algebras it would be important to know whether one can extend the result of Roos in the following way: let $\mathscr{R}(\mathcal{O}_1)$ and $\mathscr{R}(\mathcal{O}_2)$ be von Neumann sub-algebras of $\mathscr{R}(\mathscr{H})^1$ associated with the regions \mathcal{O}_1 and \mathcal{O}_2 . Take any pair of normal states φ_1 of $\mathscr{R}(\mathcal{O}_1)$ and φ_2 of $\mathscr{R}(\mathcal{O}_2)$; does there exist a normal state φ of $\mathscr{R}(\mathscr{H})$ which is an extension of φ_1 and φ_2 and a product state for $\mathscr{R}(\mathcal{O}_1)$ and $\mathscr{R}(\mathcal{O}_2)$? If this question had a positive answer the local rings would have the following remarkable properties:

a) From the existence of normal product states one could conclude that $\mathscr{R}(\mathscr{R}(\mathscr{O}_1), \mathscr{R}(\mathscr{O}_2))$ (the von Neumann algebra generated by $\mathscr{R}(\mathscr{O}_1)$ and $\mathscr{R}(\mathscr{O}_2)$) is isomorphic to the W*-tensor product of $\mathscr{R}(\mathscr{O}_1)$ and $\mathscr{R}(\mathscr{O}_2)$. Locality would reflect itself in a very simple algebraic structure of $\mathscr{R}(\mathscr{R}(\mathscr{O}_1), \mathscr{R}(\mathscr{O}_2))$.

¹ $\mathscr{B}(\mathscr{H})$ is the algebra of all bounded operators in the representation space \mathscr{H} of \mathfrak{A} .