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Abstract. We give conditions for the Bernoullicity of the v-dimensional Markov

processes.

1. Symbols and Definitions

Z v is the v-dimensional lattice of the points with integral coordinates
and K = IZV = γ[ 1,1 — {0,1}, is the space of sequences of 0's and Γs

ξeZ-

labelled with the points ξ s Z v.
The space K is compact if endowed with the topology obtained as

product of the discrete topologies on the factors /.
Similarly if Θ C Zv we define the compact space KΘ = IΘ = f\ I.

ξeΘ

We shall identify the elements X e KΘ as subsets of Θ: so that
X = (χί9χ2...χp)eKΘ means the sequence XeKΘ with values 1 in
x 1 ? x 2 , ...,xp and 0 in Θ\X.

If XeK and ξeZv we put τξX = X + ξ = {xί + ξ,x2 + ξ,...) if

X = (x 1 ? x 2 . . .) The transformations τξ:K-^K form a v-dimensional
group which we denote with the symbol τ; τ transforms Borel sets into
Borel sets.

If μ is a Borel probability measure on K which is τ-invariant and
A C Z v is a finite set (i.e. \Λ\ < oo), then we can define Borel measures

μΛ(X,E), QΛ(E) on KZ^Λ
as

eK; YnΛ = X; Yn(Zv\Λ)eE}) EcKz^Λ, (1.1)

QΛ(E)= Σ μΛ(X,E) = μ({Y\YeK, Yn(Z*\Λ)e E}). (1.2)
XCΛ

The Radon-Nikodym derivative, defined for X C A and Y C ZV\Λ

μΛ(X,dY) _ f ( γ ί γ ) n , v
QΛ(dY) - J A X l Y ) ( L 3 )


