Markov Processes, Bernoulli Schemes, and Ising Model

Francesco di Liberto, Giovanni Gallavotti, and Lucio Russo Istituto di Fisica Teorica dell'Università, Napoli, Italia

Received May 15, 1973

Abstract. We give conditions for the Bernoullicity of the *v*-dimensional Markov processes.

1. Symbols and Definitions

 Z^{ν} is the ν -dimensional lattice of the points with integral coordinates and $K = I^{Z^{\nu}} = \prod_{\xi \in Z^{\nu}} I$, $I = \{0, 1\}$, is the space of sequences of 0's and 1's labelled with the points $\xi \in Z^{\nu}$.

The space K is compact if endowed with the topology obtained as product of the discrete topologies on the factors I.

Similarly if $\Theta \subset Z^{\vee}$ we define the compact space $K_{\Theta} = I^{\Theta} = \prod_{\xi \in \Theta} I$.

We shall identify the elements $X \in K_{\Theta}$ as subsets of Θ : so that $X = (x_1, x_2 \dots x_p) \in K_{\Theta}$ means the sequence $X \in K_{\Theta}$ with values 1 in x_1, x_2, \dots, x_p and 0 in $\Theta \setminus X$.

If $X \in K$ and $\xi \in Z^v$ we put $\tau_{\xi} X = X + \xi = (x_1 + \xi, x_2 + \xi, ...)$ if $X = (x_1, x_2, ...)$. The transformations $\tau_{\xi} : K \to K$ form a v-dimensional group which we denote with the symbol τ ; τ transforms Borel sets into Borel sets.

If μ is a Borel probability measure on K which is τ -invariant and $\Lambda \subset Z^{\nu}$ is a finite set (i.e. $|\Lambda| < \infty$), then we can define Borel measures

$$\mu_{\Lambda}(X, E)$$
, $Q_{\Lambda}(E)$ on $K_{Z^{\nu} \setminus \Lambda}$

as

$$\mu_{\Lambda}(X, E) = \mu(\{Y \mid Y \in K; Y \cap \Lambda = X; Y \cap (Z^{\vee} \setminus \Lambda) \in E\}) E \subset K_{Z^{\vee} \setminus \Lambda}, \quad (1.1)$$

$$Q_{A}(E) = \sum_{X \subset A} \mu_{A}(X, E) = \mu(\{Y \mid Y \in K, Y \cap (Z^{\vee} \setminus A) \in E\}). \tag{1.2}$$

The Radon-Nikodym derivative, defined for $X \in \Lambda$ and $Y \in Z^{\nu} \setminus \Lambda$

$$\frac{\mu_{\Lambda}(X, dY)}{Q_{\Lambda}(dY)} = f_{\Lambda}(X|Y) \tag{1.3}$$