Nonlinear Realization of Chiral Symmetries and Localizability*

R. Flume*

Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France

Received April 3; in revised form June 7, 1973

Abstract. We prove that the nonlinear realization of $SU(n) \times SU(n)$ ($n \ge 3$) is uniquely determined by the requirement that the Lagrangian, with a minimal number of derivatives of those fields parametrizing the adjoint representation of the diagonal SU(n) subgroup, is localizable in the sense of Jaffe.

I. Introduction

In this paper we generalize a theorem due to Lehmann and Trute [1] which states that the nonlinear realization of the chiral $SU(2) \times SU(2)$ symmetry is uniquely determined by the requirement of localizability. We extend this theorem to $SU(n) \times SU(n)$ $(n \ge 2)$.

Each realization on a manifold of fields of the chiral group $SU(n) \times SU(n)$, which becomes linear if restricted to the diagonal SU(n) subgroup, can be brought by a suitable change of coordinates on the manifold into a "standard form" (Coleman, Wess, and Zumino [2]):

$$g: \xi \to \xi', \ \Psi \to \Psi' = \mathcal{D}(e^{U'V})\Psi$$
$$g \in SU(n) \times SU(n)$$
(1)

 \mathcal{D} is a linear representation of SU(n).

$$ge^{\xi \cdot A} = e^{\xi \cdot A}e^{U \cdot V},$$

 $A = (A_1 \dots A_{n^2-1}), \quad V = (V_1 \dots V_{n^2-1}).$

With V_i we denote the vectorial and with A_i the axial generators of $SU(n)\times SU(n)$. We choose the V_i and A_i so that they are orthonormal with respect to the Killing form. Each element g_0 in a neighbourhood of the identity of $SU(n)\times SU(n)$ can be uniquely decomposed into a product of the form:

$$g_0 = e^{\xi_0 \cdot \mathbf{A}} e^{\mathbf{U}_0 \cdot \mathbf{V}} .$$

^{*} Permanent address: II. Institut für Theoretische Physik der Universität Hamburg, Federal Republic of Germany.