Remarks on Two Theorems of E. Lieb

H. Epstein

I. H. E. S. Bures sur Yvette, France

Received March 12, 1973

Abstract. The concavity of two functions of a positive matrix A, $\operatorname{Trexp}(B + \log A)$ and $\operatorname{Tr} A^r K A^p K^*$ (where $B = B^*$ and K are fixed matrices), recently proved by Lieb, can also be obtained by using the theory of Herglotz functions.

In a recent article [1], Lieb has shown, among other things, that, if A_1, A_2, B, K are complex matrices, with $A_1 = A_1^*, A_2 = A_2^* > 0, B = B^*$, the two functions $t \to \operatorname{Tr} \exp(B + \log(tA_1 + A_2))$ $t \to \operatorname{Tr}(tA_1 + A_2)^r K \cdot (tA_1 + A_2)^p K^*$ (where $0 < r, 0 < p, r + p = s \le 1$), are concave functions of the real variable t for sufficient by small t. The object of this note is to indicate how this can also be seen by using the theory of Herglotz functions: in fact, for $A_1 > 0$, the two above mentioned functions can be extended to Herglotz functions holomorphic in the complex plane cut along the real axis from $-\infty$ to $\tau \ge 0$. Some supplementary work is necessary to study the case of arbitrary self-adjoint A_1 . The applicability of the method obviously extends beyond the examples treated here.

Note. in this paper, if A is an element of a C^* -algebra $\mathscr A$ with unit, we write $A \ge 0$ to mean $A = B^*B$ for some $B \in \mathscr A$, and A > 0 to mean that, for some real number a > 0, the inequality $A - a \ge 0$ holds. Of course A > 0 is equivalent to: $A \ge 0$ and A^{-1} exists as an element of $\mathscr A$.

I. Remarks

Let \mathscr{A} be a C^* algebra with unit.

1. Let $A \in \mathcal{A}$ and let $\operatorname{Sp} A$ denote its spectrum. Suppose f is a complex function holomorphic in an open set of the complex plane containing $\operatorname{Sp} A$. Then f(A) can be defined (as a holomorphic function of A with values in \mathcal{A}) by

$$f(A) = \frac{1}{2\pi i} \int_{\mathscr{C}} f(z) (z - A)^{-1} dz$$

where \mathscr{C} is a contour surrounding Sp A. All reasonable definitions of f(A) coincide with this and:

$$\operatorname{Sp} f(A) \subset f(\operatorname{Sp} A)$$

(see [2], Chapter I, § 4, Proposition 8, p. 47).